Optibrium Widens Access to Industry-Leading Docking Method
New PyMOL interface extends access to Optibrium’s structure-based design method Surflex-Dock CAMBRIDGE, UK, 04 February 2025 – Optibrium, a leading…
New PyMOL interface extends access to Optibrium’s structure-based design method Surflex-Dock CAMBRIDGE, UK, 04 February 2025 – Optibrium, a leading…
What comprises large molecules? When we talk about “large molecules,” we often think of biologics like monoclonal antibodies, proteins, and…
CAMBRIDGE, UK, 22 October 2024 – Optibrium, a leading developer of software and AI solutions for molecular design today announced…
In this paper, we describe an extended benchmark for non-cognate docking of macrocyclic ligands, and the superior performance of Surflex-Dock…
Interested in improving your binding mode predictions? Surflex-Dock is a unique method for molecular docking, offering automatic pipelines for ensemble docking, applicable to both small molecules and large peptidic macrocycles alike.
Systematic optimisation of large macrocyclic peptide ligands is a serious challenge. Here, we describe an approach for lead optimisation using the PD-1/PD-L1 system as a retrospective example of moving from initial lead compound to clinical candidate.
We show that the distribution of expected global strain energy values is dependent on molecular size in a superlinear manner. The distribution of strain energy follows a rectified normal distribution whose mean and variance are related to conformational complexity.
To better understand conformational propensities, global strain energies were estimated for 156 protein-macrocyclic peptide cocrystal structures.
We present an approach that uses structural information known prior to a particular cutoff-date to make predictions on ligands whose bounds structures were determined later. The knowledge-guided docking protocol was tested on a set of ten protein targets using a total of 949 ligands.
Here we present an analysis of novel drug/target predictions, focusing on those that were not obvious based on known pharmacological crosstalk.
This paper demonstrates how the Surflex-PSIM method can help investigate hypotheses around protein function in cases where function cannot be determined by sequence similarity.