Rapid AI generation of optimised compound designs, guided by user interaction
Pairing AI with human expertise We present a novel AI compound optimisation system, designed to include human oversight as a…
Systematic optimisation of large macrocyclic peptide ligands is a serious challenge. Here, we describe an approach for lead optimisation using the PD-1/PD-L1 system as a retrospective example of moving from initial lead compound to clinical candidate.
We show how conformational restraints can be derived by exploiting NMR data to identify low-energy solution ensembles of a lead compound. Such restraints can be used to focus conformational search for analogs in order to accurately predict bound ligand poses through molecular docking and thereby estimate ligand strain and protein-ligand intermolecular binding energy. We also describe an analogous ligand-based approach that employs molecular similarity optimisation to predict bound poses. Both approaches are shown to be effective for prioritising lead-compound analogs.
Surprisingly, relatively small ligand modifications, which may have minimal effects on predicted bound pose or intermolecular interactions, often lead to large changes in estimated strain that have dominating effects on overall binding energy estimates. Effective macrocyclic conformational search is crucial, whether in the context of NMR-based restraints, X-ray ligand refinement, partial torsional restraint for docking/ligand-similarity calculations or agnostic search for nominal global minima. Lead optimisation for peptidic macrocycles can be made more productive using a multi-disciplinary approach that combines biophysical data with practical and efficient computational methods.
Pairing AI with human expertise We present a novel AI compound optimisation system, designed to include human oversight as a…
Introduction Using the integrated set of computational methods within the BioPharmics™ Platform, macrocycles can be effectively modelled for lead optimisation.…
Ground truth matters more than algorithm hype In drug discovery, we deal in imperfect data. Assays are noisy. Endpoints are…