This website stores cookies on your computer. These cookies collect information about how you interact with our website and allow us to remember you. We use this information to improve and customise your browsing experience and for analytics and metrics about our visitors on this website and other media. To find out more about the cookies we use, see our Privacy Policy.
If you decline, your information won’t be tracked when you visit this website. A single cookie will be used in your browser to remember your preference not to be tracked.
The ability to predict the propensity of a molecule to lose or gain a proton in water is crucial for the development of new chemical entities with desirable pharmacokinetic (PK), absorption, distribution, metabolism and excretion (ADME) and binding properties. This study aimed to create a model using a semi-empirical quantum mechanics (QM) approach combined with machine learning (ML).The resultant model displayed excellent accuracy, comparable to other much more computationally intensive methods.
This article is a collaboration with Intellegens, the University of Cambridge and AstraZeneca. It provides a proof-of-concept study in which Cerella™ is used to predict rat in vivo pharmacokinetic (PK) parameters and concentration–time PK profiles.
In this webinar, we examine the effective use of QSAR modelling in drug discovery and discuss a variety of pain points for medicinal chemists in knowing when a model can be trusted and how to avoid common pitfalls.