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Machine Learning in CADD has Special Challenges

Therapeutic small molecules are only rarely experiments of nature!

CADD prediction challenges

The things we want to predict are in
the future (e.g. what a candidate
molecule will do)

They do not come from the same
statistical population as the
molecules/activity-data from which
we can induce models

This violates the central assumption
of machine-learning:

Predict on things that come
from the same population as
things used for training a model

optibriur 8/14/2025

Pure ML vs. Physical Parameter Estimation

* Pure machine learning

— A numerical input representation may be grounded in physically
relevant features for a particular domain

— But the parameters to be estimated are inscrutable
— Subject to the central ML assumption

* Physical parameter estimation
— Begins from a model that mirrors physical reality
> Atthe quantum level, we know the “truth” about atoms and molecules
> We have developed extremely good approximations (e.g. DFT)
> We have good grasp of non-covalent binding based on thermodynamics
— Each parameter is directly related to a physical quantity

— With physical realism, we might be able to make predictions on a
causal basis: does not require population assumptions



Two Dimensions: Physicality vs. Number of Parameters

Parameter counts are of a different order with the newest Pure-ML models
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Learned Potentials
ANI-2x (700K)

2D QSAR

RF SVM

NN

3D QSAR

Compass
Field QSAR

CoMFA CoMSIA

Physical
Simulation

FEP MD

/ Force-Fields ™\
OPLS

GAFF
MMFF94

\ DREIDING /

Physical 3D QSAR
QuanSA

Conventional Docking
Surflex-Dock Gold
Glide FlexX

Non-physical parameters

8/14/2025

Physical parameters

Many
Thousands

Thousands

Dozens



Actually More Than Two Dimensions

Dependency on experimental data is another dimension
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(Co-Folding and Docking)

AlphaFold 3, Boltz-2 (> 100M)
Chai-1
AlphaFold 2 (93M)

S DiffDock-L (33M) )

Learned Potentials
ANI-2x (700K)

2D QSAR

RF SVM

NN

We can make unbiased and
deep sampling to generate
accurate training data.
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Field QSAR
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Actually More Than Two Dimensions

Dependency on experimental data is another dimension
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(Co-Folding and Docking)

AlphaFold 3, Boltz-2 (> 100M)
Chai-1
AlphaFold 2 (93M)

S DiffDock-L (33M) )

Learned Potentials
ANI-2x (700K)

2D QSAR

RF SVM

NN

We must rely on limited
target- and ligand-specific
experimental data
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Target choice and ligand structure reflect economics, fashion, and

human design bias
Ligands for the same target change dramatically over time

Y

O\\ ,N\)
S
Y
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Pfizer
Patented 1992

Sh

PN

Sildenafil Citrate (Viagra) Vardenafil (Levitra)

Marketed by Bayer/GSK
Patented 2002

Viagra/Levitra is the norm

A

If future drugs against a
target came from the
same population as past
ones, there would be no
distributional difference
in the blue and magenta
curves.

Pfizer
Patented 1992

Sildenafil Citrate (Viagra) Tadalafil (Cialis)

Viagra/Cialis is the outlier

0

Marketed by Lilly
Patented 1995
Markedly better PK.

Cumulative Proportion

Distributions of Drug Pair 2D Similarities

Different Target
Same Target
Patent Delta < 10 =—— |
Patent Delta > 20 —— |

C 0.1 02 03 04 95 06 07 08 0.9 1
GSIMI2D Score

ol |
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Cleves, A.E., Jain, A.N. Effects of inductive bias on computational evaluations of ligand-based modeling and on drug discovery.

J Comput Aided Mol Des 22, 147-159 (2008). https://doi.org/10.1007/s10822-007-9150-y


https://doi.org/10.1007/s10822-007-9150-y

Ligand design reflects 2D thinking: A human inductive bias

The only difference between the and green curves is that humans were thinking about the same target for the green pairs.
Sodium channel antagonist o
o Q)LNH N These 2D-influenced design examples are
KL QO\/\/NQ o @NQ hugely overrepresented in our data sets!
° Distributions of Drug Pair 2D Similarities
Pramoxine Encainide
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Serotonin reuptake inhibitor
Also hits histamine receptor

. . Cleves, A.E., Jain, A.N. Effects of inductive bias on computational evaluations of ligand-based modeling and on drug discovery.
opt.lbr“lum’ 8/14/2025 J Comput Aided Mol Des 22, 147-159 (2008). https://doi.org/10.1007/s10822-007-9150-y
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Molecular Mechanics Potentials

Physical parameter estimation relies on a sensible model of molecules

Physical model

* Atoms and bonds, with assigned types
— Atoms (1 atom)
— Bonds (2 atoms)
— Bond angles (3 atoms)
— Torsions (4 atoms)
— Non-bonded interactions (2 atoms)

* Relatively simple functions with internal
parameters to estimate

* Many thousands of parameters

Among the most successful predictive
modeling approaches

Many variations!

*  AMBER (GAFF):
https://doi.org/10.1021/acs.jpcb.5b00689

«  MMFF94
https://doi.org/10.1002/(SICI)1096-
987X(199604)17:5/6%3C490::AID-JCC1%3E3.0.CO;2-P

¢ OPLSS3
https://doi.org/10.1021/acs.jctc.5b00864
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Merck Molecular Force Field. 1. Basis,
Form, Scope, Parameterization, and
Performance of MMFF94*

THOMAS A. HALGREN

Department of Molecular Design and Diversity, Merck Research Laboratories,
Rahway, New Jersey 07065

Evmer = 2 EB;; + Y EA,; + 2 EBA
+ 2 EOOP,;, + Y ET
+ 2 EvdW,, + Y EQ;

EB,; = 143.9325Ar2

ij

2
X(1 + csAry + 7/12¢cs* Arl)

‘ I ( ol o Chenica Ther snd Compotston
pubs.acs.org/JCTC

OPLS3: A Force Field Providing Broad Coverage of Drug-like Small
Molecules and Proteins

Edward Harder,*" Wolfgang Damm,” Jon Maple," Chuanjie Wy, Mark Reboul,” Jin Yu Xiang'
Lingle Wang," Dmitry Lupyan,” Markus K. Dahlgren,” Jennifer L. Knight," Joseph W. Kaus,"
David S. Cerutti,” Goran Krilov," William L. Jorgensen,” Robert Abel," and Richard A. Friesner”

‘Schmdmger, Inc,, 120 West 45th Street, New York, New York 10036, United States
Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
$Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
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Table 1. Number of Unique Parameters for Valence Terms
in the Respective Force Fields

parameter type MMFFE OPLS_2005 OPLS2.1 OPLS3
stretches 456 1054 1181 1187
bends 2283 3997 14916 15236
torsions 520 1576 45472 48142

The parameters are estimated using both experimental and
quantum mechanical data, the latter being carefully
generated to cover the desired chemical space.


https://doi.org/10.1021/acs.jpcb.5b00689
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3C490::AID-JCC1%3E3.0.CO;2-P
https://doi.org/10.1021/acs.jctc.5b00864

Pure-ML Energetic Potentials

Black-box parameter estimation relies on MANY training examples

ANI-1

Accurate NeurAl networK engINe for

Molecular Energies (ANAKIN-ME)

Parameterized for CHNO

Computes an atomic-environment-vector

— These probe specific regions of an individual
atom's radial and angular chemical environment

Must estimate > 100 thousand parameters

Uses a huge amount of unbiased training

data

— Nearly 22,000,000 conformational energies

— 57,000 molecules from the GDB-11 database,

which exhaustively enumerates stable small
molecules

ANI-2X

optibriurm

Generalizes to seven elements:
(H,C,N,O,F, CLS)

Roughly 700,000 parameters

Uses active learning to choose training
exemplars (millions)

8/14/2025

; »
Chemical g'm
Science )

|
EDGE ARTICLE View Article Online
|

View Journal | View Issue

ANI-1: an extensible neural network potential with
DFT accuracy at force field computational costt

@ CrossMark
Srossh

Cite this: Chem. Sci, 2017, 8, 3192
J.S. Smith,? O. Isayev*® and A. E. Roitberg*®

Atomic NNP (X) B HD-Atomic NNP (H,0)

d-— 9192193 qd — 91]92]93
I
5iXEi> 3
| 00 /[
L @I@I@I@ divine NP
S Atomic
l3 ':> @I@ Energies::>

Atomic
Energy

pubs.acs.org/JCTC

Extending the Applicability of the ANI Deep Learning Molecular
Potential to Sulfur and Halogens

Christian Devereux, Justin S. Smith,* Kate K. Huddleston, Kipton Barros, Roman Zubatyuk,
Olexandr Isayev,* and Adrian E. Roitberg*

[{&;"‘Y Cite This: J. Chem. Theory Comput. 2020, 16, 4192-4202

E Read Online

Energy (kcal/mol)

New and improved ANI-2x adds 3 new elements S, F, and ClI!

The force is strong with this one!

DFT MAE= 0.04 — ANl-2x
ANI-2x MAE= 0:19 -~ DFT
OPLS3 MAE= 0:33 . (cop(r)

—+— OPLS3

g SN

20 40 60 80 100 120 140 160

180 200 220 240 260

Dihedral Angle (degrees)

280 300 320 340

Table 1. MAE and RMSE between ANI-2x, ®B97X/6-31G¥,
and OPLS3 against CCSD(T)/CBS on the Genentech
Torsion Benchmark®?

method MAE (kcal/mol) RMSE (kcal/mol)
DFT 0.36 0.51
ANI-2x 0.42 0.59
OPLS3 0.67 1.02

The parameters are estimated using massive and unbiased
data sets of DFT-based conformational energies.



Huge, accurate, and unbiased training sets

Pure ML learned potentials and physically parameterized force-fields are successful and beneficial
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(Co-Folding and Docking)

AlphaFold 3, Boltz-2 (> 100M)
Chai-1
AlphaFold 2 (93M)

S DiffDock-L (33M) )

Learned Potentials
ANI-2x (700K)

2D QSAR

RF SVM

NN

Physical
Simulation

FEP MD

/ Force-Fields ™\
OPLS

GAFF
MMFF94

We can make unbiased and
deep sampling to generate
accurate training data that
are sufficient for effective
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generalization.
Physical 3D QSAR
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3D QSAR
Compass Conventional Docking
Field QSAR Surflex-Dock  Gold
CoMFA CoMSIA Glide FlexX

Non-physical parameters
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What happens when we must rely on experimental data?
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(Co-Folding and Docking)

AlphaFold 3, Boltz-2 (> 100M)
Chai-1
AlphaFold 2 (93M)

S DiffDock-L (33M) )

Learned Potentials
ANI-2x (700K)

We must rely on limited

target- and ligand-specific

experimental data

Physical )/ Force-Fields
Simulation OPLS
FEP MD GAFF
MMFF94

\ DREIDING

Conventional Docking
Surflex-Dock Gold
Glide FlexX

Non-physical parameters

8/14/2025

Physical parameters

Many
Thousands

Thousands

Dozens

11



Co-Folding: Pure ML strongly affected by near-neighbor effects .
ékrinjar, Eberhardt, Durairaj, Schwede 2025: AlphaFold3, Chai-1, Protenix, and Boltz-1

Benchmark 1907 A) All common subset
e 2600 protein/ligand structures post 9-30-2021 80 1
* The date cutoff was after training data for co-folding &
methods g °
Pure ML § 40
=]
* AlphaFold3, Chai-1, Protenix, and Boltz-1 “ -@ AlphaFold3
20 - - Protenix
* Number of parameters: Millions 9~ Chai-l
-#%- Boltz-1
*  Number of training exemplars: Tens of thousands ol . =
Q Q
AN NSNS

Similarity to the training set

Observations echoed in multiple papers

bioRxiv preprint doi: https://doi.org/10.1101/2025.02.03.636309; this version posted February 7, 2025. The copyright holder for this preprint
(which was notcertiied by poer review) is the author funder, whg has granted bioRiv 3 liense fo display the preprint in perpetuiy. It s made
available undér aCC-BY 4.0 Interational license.

* Matthew R. Masters, Amr H. Mahmoud, Markus A. Lill (2024)
https://doi.org/10.1101/2024.06.03.597219

* Ajay N. Jain, Ann E. Cleves, W. Patrick Walters (2024)
https://doi.org/10.48550/arXiv.2412.02889

HAVE PROTEIN-LIGAND CO-FOLDING METHODS
MOVED BEYOND MEMORISATION?

ccccc

Practical Cheminformatics Publications ~ Tutorials ~ Blog  Videos  Resources

Ways to Go

i Published: July 21, 2025

Three Papers Demonstrating That Cofolding Still Has a

Many Posebusters Complexes Have Duplicates Deposited Before 2021

&P WX

N (6
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;‘&~ =
( § r
N

)
7r7r AWJ
2022 2014

https://patwalters.github.io/Three-Papers-Demonstrating-That-

Cofolding-Still-Has-a-Ways-to-Go/?s=03

4cdo AWJ

* Martin Buttenschoen, Garrett M. Morris, Charlotte M. Deane

Near-neighbor effects exist because

(2023)
https://doi.org/10.48550/arXiv.2308.05777

optibriur 8/14/2025

Peter Skrinjar
Biozentrum, University of Basel
SIB Swiss Institute of Bioinformatics
peter . skrinjarunibas.ch

Janani Durairaj
Biozentrum, University of Basel
SIB Swiss Institute of Bioinformatics
janani.durairaj@unibas.ch

Jéréme Eberhardt
Biozentrum, University of Basel
SIB Swiss Institute of Bioinformatics
jerome.eberhardt@unibas.ch

Torsten Schwede
Biozentrum, University of Basel
SIB Swiss Institute of Bioinformatics
torsten.schwedeQunibas.ch

of the biased manner in which we
explore chemical space against

biological targets.
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Docking: Pure ML vs. Physical Parameters -

PoseBusters Benchmark

* Designed to evaluate docking quality on a pharmaceutically

relevant set of 308 protein/ligand complexes
* [llustrated quality problems with Pure-ML docking

predictions i
:w A NN

* M. Buttenschoen, G.M. Morris, C.M. Deane
https://doi.org/10.48550/arXiv.2308.05777
¢ Can be run with a known binding site or as “blind docking”

Known binding-site (pocket-based docking)
¢ Cognate ligand re-docking

* Top-tier conventional docking methods run by experienced
users typically produce 60-80% success at the 2.0 ARMSD
success threshold

Unknown binding-site (“blind” docking)

* Must find the binding sites, dock, and score/rank

* Quite a bit more difficult

optibriur 8/14/2025

ccccc

ookt aw)

nnnnnn

......................

Data in Black from DiffDock-L paper: https://doi.org/10.48550/arXiv.2402.18396

Method RMSD < 2A

Pocket-based docking

GOLD 58%

VINA 60%

DEEPDOCK 20%

UNI-MoOL 22%

SURFLEX-DOCK 7894 Afew dozen parameters
Method RMSD < 2A

Blind docking

EQUIBIND 2% Millions of
TANKBIND 16% Parameters
DIFFDOCK 38% y .
ROSETTAFOLD-ALLATOM' 42% ( of parameters
DIFFDOCK-L 50%

SURFLEX-DOCK 57%, Afew dozen parameters
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https://doi.org/10.48550/arXiv.2402.18396

Docking: Pure ML vs. Physical Parameters
DockGen “blind docking” benchmark

DockGen

* Designed to contain diverse structures to avoid the
problems of near-neighbor effects

* Novel structures compared to PDBBind and BindingMOAD

* Highly diverse set, dominated by ligands that are " Initial PDB processing of Bacillus
. . . Stearothermophilus TRP RNA-
amino-acids, enzyme co-factors, and metabolites Binding Attenuation Protein

B. All 11 returned pockets from
sf-dock/psim_findcav

Pure ML: DiffDock-L C. g\gcioect:ed poses from docking to all
* Number of parameters: 33 million . Top-scoring pose family: pocket

* Number of training exemplars: Tens of thousands Rt e At o
* Performance (A RMSD): 28% < 2.0, Median = 3.7

Conventional Docking: Surflex-Dock
* Number of parameters: A few dozen

* Number of training exemplars: A few hundred (pre-2008)
« Performance (A RMSD): 41% < 2.0, Median = 3.3

’opt.ibr‘ium‘ 8/14/2025 DockGen benchmark from DiffDock-L paper: https://doi.org/10.48550/arXiv.2402.18396 14
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Both Pure ML and Physical Parameter Estimation can succeed

Reliance on limited experimental data to tune millions of parameters is fraught

Pure ML

Inscrutable black-box parameters that may range into the many
millions

Large models can be highly effective if training data exists that is
unbiased and sufficient

The data in the PDB and ChEMBL required hundreds of thousands of
person-years to produce

— The data are strongly biased
— Such data will not grow very fast

— Thereis no computational method on the horizon that will support
accurate data generation

Billions | 5 Folding and Docking Worry a lot about memorization
AlphaFold 3, Boltz-2 (> 100M) K and near-neighbor effects Physical Force-Fields Many
Chai-1 Simulation OPLS Thousands
. IV.Iany AlphaFold 2 (93M) FEP MD GAFF
Millions
DiffDock-L (33M) MMFF4
DREIDING
Millions i We must rely on limited
Learned Potentials target- and ligand-specific
ANI-2x (700K) experimental data Thousands
Man .
Thousand‘s( Maybe worry: One can build
Worry less: More data relative poor physically-inspired models
to number of parameters Physical 3D QSAR
Thousands 2D QSAR 3D OSAR QuanSA
RF
SVM Compass Conventional Docking
Field QSAR Surflex-Dock  Gold Dozens
Dozens CoMFA CoMSIA Glide FlexX

Non-physical parameters Physical parameters

optibriur 8/14/2025

Physical Parameter Estimation

* Models that have parameters which mirror a physically sensible
understanding of underlying physics have a built-in advantage for
generalization

— They lean toward being causally-based, which ameliorates dependency on
the central ML assumption

* There is still wide variation in the quality of such models

— However, the best-performing of such approaches often exhibit
substantially better predictive behavior than large Pure-ML models that
rely on limited/biased experimental data

Billions | (Go-Folding and Docking
AlphaFold 3, Boltz-2 (> 100M) Physical Force-Fields Many
Chai-1 Simulation OPLS Thousands
Man e
Il v AlphaFold 2 (93M) FEP MD GAFF
Millions
DiffDock-L (33M) MMFFo4
Worry the least: We can DREIDING
Millions - generate sufficient unbiased
MO (R data, and we can measure
ANI-2x (700K) prediction errors in our models. Thousands
Many
Thousands
Physical 3D QSAR
2D QSAR
Thousands Q 3D QSAR QuanSA
RF
SVHL Compass Conventional Docking
Field QSAR Surflex-Dock  Gold Dozens
Dozens CoMFA CoMSIA Glide FlexX

Non-physical parameters Physical parameters
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ForceGen

CC[CRRH]1C[CRR]1 (C(=0)NS (=0) (=0) C2CC2)
NC (=0) [CR@H] 3C[CRRH] 4CN3C (=0) [CRRH] (NC
(=0) OCC (CCCCC5=C6CN (CC6=CC=C5) C (=0) 04)
(c)cyc(c) (c)c

Atom-centered Gaussians

Surflex-Dock

BioPharmics

A platform for 3D molecular design

Pose family 001: 0.0838 \&
2XNB_002: 7.006 > 8.5 )4
2XNB_003: 6.803 > 8.4 PN
2XNB_010: 6.342 > 8.0 w

Correct family emerges based on known poses

Pose family 000: 0.7990

A )

e.
2XNB_006: 6.588 > 8.9
2XNB_011: 6.294 -> 8.8
2XNB_012: 6.091 > 9.5




