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Machine Learning in CADD has Special Challenges

CADD prediction challenges

• The things we want to predict are in 
the future (e.g. what a candidate 
molecule will do)

• They do not come from the same 
statistical population as the 
molecules/activity-data from which 
we can induce models

• This violates the central assumption 
of machine-learning:

Predict on things that come 

from the same population as 

things used for training a model

Pure ML vs. Physical Parameter Estimation

• Pure machine learning
– A numerical input representation may be grounded in physically 

relevant features for a particular domain

– But the parameters to be estimated are inscrutable

– Subject to the central ML assumption

• Physical parameter estimation
– Begins from a model that mirrors physical reality

> At the quantum level, we know the “truth” about atoms and molecules

> We have developed extremely good approximations (e.g. DFT)

> We have  good grasp of non-covalent binding based on thermodynamics

– Each parameter is directly related to a physical quantity

– With physical realism, we might be able to make predictions on a 
causal basis: does not require population assumptions

Therapeutic small molecules are only rarely experiments of nature!
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Two Dimensions: Physicality vs. Number of Parameters
Parameter counts are of a different order with the newest Pure-ML models
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Actually More Than Two Dimensions
Dependency on experimental data is another dimension

Non-physical parameters Physical parameters

Dozens

Thousands

Many

Thousands

Dozens

Thousands

Many

Thousands

Millions

Many

Millions

Billions

Conventional Docking

Surflex-Dock

Glide

Gold

FlexX

Physical 3D QSAR

QuanSA
3D QSAR

CoMFA CoMSIA

Field QSAR

Force-Fields

OPLS

MMFF94

GAFF

DREIDING

2D QSAR

RF

NN

SVM

Learned Potentials

ANI-2x (700K)

Co-Folding and Docking

AlphaFold 3, Boltz-2 (> 100M)

Chai-1

AlphaFold 2 (93M)

DiffDock-L (33M)

Compass

Physical 

Simulation

FEP    MD

We can make unbiased and 

deep sampling to generate 

accurate training data.
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Actually More Than Two Dimensions
Dependency on experimental data is another dimension
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experimental data
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Target choice and ligand structure reflect economics, fashion, and 
human design bias
Ligands for the same target change dramatically over time

Cleves, A.E., Jain, A.N. Effects of inductive bias on computational evaluations of ligand-based modeling and on drug discovery. 
J Comput Aided Mol Des 22, 147–159 (2008). https://doi.org/10.1007/s10822-007-9150-y
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https://doi.org/10.1007/s10822-007-9150-y


8/14/2025 7

Ligand design reflects 2D thinking: A human inductive bias
The only difference between the cyan and green curves is that humans were thinking about the same target for the green pairs.

Cleves, A.E., Jain, A.N. Effects of inductive bias on computational evaluations of ligand-based modeling and on drug discovery. 
J Comput Aided Mol Des 22, 147–159 (2008). https://doi.org/10.1007/s10822-007-9150-y

Green cumulative histogram

A and B hit the same 

primary target

Red cumulative histogram

A and B do not hit the 

same primary 

target

Cyan cumulative histogram

B hits the primary 

target of A as 

a side-effect

O

N

OH

O
HN

O

O

O

N
HO

O

HN

O

O

ON
H

O

HN

O

ON
H

O

HN

O

O

N

HO

O

F

N

NH

O

N

HO

O

F

N

NH

GABAA barbiturate-site

DNA gyrase

 Adrenergic

O

O N

O

O

NH N

O

Pramoxine Encainide

Sodium channel antagonist

Potassium channel

antagonist (cardiac)

Also hits sodium channel

Dopamine antagonist

Also hits hERG

ThioridazineIbutilide

hERG

modulator

N N

S

S

CitalopramAzelastine

Histamine

antagonist

Serotonin reuptake inhibitor

Also hits histamine receptor

These 2D-influenced design examples are 

hugely overrepresented in our data sets!

https://doi.org/10.1007/s10822-007-9150-y
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Molecular Mechanics Potentials

Physical model

• Atoms and bonds, with assigned types
– Atoms (1 atom)

– Bonds (2 atoms)

– Bond angles (3 atoms)

– Torsions (4 atoms)

– Non-bonded interactions (2 atoms)

• Relatively simple functions with internal 
parameters to estimate

• Many thousands of parameters

Among the most successful predictive 

modeling approaches

Many variations!

• AMBER (GAFF):  
https://doi.org/10.1021/acs.jpcb.5b00689

• MMFF94
https://doi.org/10.1002/(SICI)1096-
987X(199604)17:5/6%3C490::AID-JCC1%3E3.0.CO;2-P

• OPLS3
https://doi.org/10.1021/acs.jctc.5b00864

Physical parameter estimation relies on a sensible model of molecules

The parameters are estimated using both experimental and 

quantum mechanical data, the latter being carefully 

generated to cover the desired chemical space.

O

NH

N

N
N

O

S

O

O

N

N

https://doi.org/10.1021/acs.jpcb.5b00689
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3C490::AID-JCC1%3E3.0.CO;2-P
https://doi.org/10.1021/acs.jctc.5b00864
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Pure-ML Energetic Potentials

ANI-1

• Accurate NeurAl networK engINe for 
Molecular Energies (ANAKIN-ME)

• Parameterized for CHNO
• Computes an atomic-environment-vector

– These probe specific regions of an individual 
atom's radial and angular chemical environment

• Must estimate > 100 thousand parameters
• Uses a huge amount of unbiased training 

data
– Nearly 22,000,000 conformational energies
– 57,000 molecules from the GDB-11 database, 

which exhaustively enumerates stable small 
molecules

ANI-2X

• Generalizes to seven elements: 
(H, C, N, O, F, Cl, S)

• Roughly 700,000 parameters
• Uses active learning to choose training 

exemplars (millions)

Black-box parameter estimation relies on MANY training examples

The parameters are estimated using massive and unbiased 

data sets of DFT-based conformational energies.
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Huge, accurate, and unbiased training sets
Pure ML learned potentials and physically parameterized force-fields are successful and beneficial
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generalization.



8/14/2025 11

What happens when we must rely on experimental data?
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Co-Folding: Pure ML strongly affected by near-neighbor effects

Benchmark

• 2600 protein/ligand structures post 9-30-2021

• The date cutoff was after training data for co-folding 
methods

Pure ML

• AlphaFold3, Chai-1, Protenix, and Boltz-1

• Number of parameters: Millions

• Number of training exemplars: Tens of thousands

Observations echoed in multiple papers

• Matthew R. Masters, Amr H. Mahmoud, Markus A. Lill (2024) 
https://doi.org/10.1101/2024.06.03.597219

• Ajay N. Jain, Ann E. Cleves, W. Patrick Walters (2024) 
https://doi.org/10.48550/arXiv.2412.02889

• Martin Buttenschoen, Garrett M. Morris, Charlotte M. Deane 
(2023) 
https://doi.org/10.48550/arXiv.2308.05777

Škrinjar, Eberhardt, Durairaj, Schwede 2025:  AlphaFold3, Chai-1, Protenix, and Boltz-1

https://patwalters.github.io/Three-Papers-Demonstrating-That-

Cofolding-Still-Has-a-Ways-to-Go/?s=03

Near-neighbor effects exist because 
of the biased manner in which we 
explore chemical space against 
biological targets.

https://doi.org/10.1101/2024.06.03.597219
https://doi.org/10.48550/arXiv.2412.02889
https://doi.org/10.48550/arXiv.2308.05777
https://patwalters.github.io/Three-Papers-Demonstrating-That-Cofolding-Still-Has-a-Ways-to-Go/?s=03
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Docking: Pure ML vs. Physical Parameters

PoseBusters Benchmark

• Designed to evaluate docking quality on a pharmaceutically 
relevant set of 308 protein/ligand complexes

• Illustrated quality problems with Pure-ML docking 
predictions

• M. Buttenschoen, G.M. Morris, C.M. Deane 
https://doi.org/10.48550/arXiv.2308.05777

• Can be run with a known binding site or as “blind docking”

Known binding-site (pocket-based docking)

• Cognate ligand re-docking

• Top-tier conventional docking methods run by experienced 
users typically produce 60-80% success at the 2.0 Å RMSD 
success threshold 

Unknown binding-site (“blind” docking)

• Must find the binding sites, dock, and score/rank

• Quite a bit more difficult

SURFLEX-DOCK 78%

SURFLEX-DOCK 57%

Many millions 

of parameters

Millions of 

parameters

A few dozen parameters

A few dozen parameters

Data in Black from DiffDock-L paper: https://doi.org/10.48550/arXiv.2402.18396

https://doi.org/10.48550/arXiv.2308.05777
https://doi.org/10.48550/arXiv.2402.18396
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Docking: Pure ML vs. Physical Parameters

DockGen

• Designed to contain diverse structures to avoid the 
problems of near-neighbor effects

• Novel structures compared to PDBBind and BindingMOAD
• Highly diverse set, dominated by ligands that are 

amino-acids, enzyme co-factors, and metabolites

Pure ML: DiffDock-L

• Number of parameters: 33 million

• Number of training exemplars: Tens of thousands
• Performance (Å RMSD): 28% < 2.0, Median = 3.7

Conventional Docking: Surflex-Dock

• Number of parameters: A few dozen

• Number of training exemplars: A few hundred (pre-2008)
• Performance (Å RMSD): 41% < 2.0, Median = 3.3

DockGen “blind docking” benchmark

DockGen benchmark from DiffDock-L paper: https://doi.org/10.48550/arXiv.2402.18396

https://doi.org/10.48550/arXiv.2402.18396
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Both Pure ML and Physical Parameter Estimation can succeed

Pure ML

• Inscrutable black-box parameters that may range into the many 
millions

• Large models can be highly effective if training data exists that is 
unbiased and sufficient

• The data in the PDB and ChEMBL required hundreds of thousands of 
person-years to produce

– The data are strongly biased

– Such data will not grow very fast

– There is no computational method on the horizon that will support 
accurate data generation

Physical Parameter Estimation

• Models that have parameters which mirror a physically sensible 
understanding of underlying physics have a built-in advantage for 
generalization

– They lean toward being causally-based, which ameliorates dependency on 
the central ML assumption

• There is still wide variation in the quality of such models

– However, the best-performing of such approaches often exhibit 
substantially better predictive behavior than large Pure-ML models that 
rely on limited/biased experimental data

Reliance on limited experimental data to tune millions of parameters is fraught

Worry a lot about memorization 

and near-neighbor effects

Worry less: More data relative 

to number of parameters

Maybe worry: One can build 

poor physically-inspired models

Worry the least: We can 

generate sufficient unbiased 

data, and we can measure 

prediction errors in our models.
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