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Introduction to QuanSA: Quantitative Surface-field Analysis o

Affinity prediction challenges:

The things we want to predict are in the future. They do not come from the same statistical population as the ot 3 st
molecules/activity-data from which we can induce models. This violates the central assumption of machine-learning: predict BT g > o Bl

on things that come from the same population as things used to train.
QuanSA uses a surface representation:

To address these challenges, it is necessary to use a physics-driven domain knowledge in the model induction process. The
actual molecular surfaces and their properties are not well represented by the atom/bond depictions used to symbolize
molecules. Surfaces are congruent even when they don’t look like they should be.

The QuanSA method

To define a ‘pocket field’, an initial alignment of all training molecules is
constructed and function parameters at the observer points are learned
based on activity data [1].
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The QuanSA pocket field is iteratively refined using multiple instance
machine learning; considering multiple poses for each compound means
that no assumptions are made about the ‘right’ pose.

Building/applying a model is tractable, taking just hours to build or refine.

QuanSA models require no known target; models can be informed by
protein structure or applied on purely phenotypic data.

A new molecule can typically be run in seconds; thus, very large-scale
applications are possible.

Predictions are supported with a score, a pose and quality metrics.

Structurally novel molecules are often well within the domain of
applicability, accurately supporting scaffold-hopping.

QuanSA benchmarking vs FEP+

Schindler 2020 and Abel 2015 FEP+ comparison

A critical application is to accurately predict affinities for future molecules.
QuanSA and FEP+ models were built and evaluated [2] for sixteen targets
from two published datasets using temporal segregation. Training set
compounds were selected based upon similarity to the FEP+ reference
ligand, forcing the QuanSA models to extrapolate. The study compared the
accuracy across the targets, as summarized in the plots below.

Schindler 2020 results (8 targets)

1F

: 5 + i
* x

Predicted pK,

[sg]

Cumulative proportion

n

T FEPY e ]
QuanSA, =——
i DD =

=9
IR N RPN SRS S oot N, U S S SR
< : + e En .
[£)]
s

4 5 6 7 & 9 10 0 0.5 1 15 2 25 3 35 34 -3 2% 2 45 1 05 0 05 1 1 2 25 3 35

Experimental pK; Unsigned Prediction Error (pK;) Signed Prediction Error (pK)

Abel 2015 results (8 targets)
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QuanSA and FEP+ have similar accuracy.

Both methods are highly synergistic; a hybrid (mean) score increases
accuracy compared to either method.

QuanSA is ~1000x faster than FEP+, alleviating screening bottlenecks.

© 2025 Optibrium Ltd. Optibrium™ is a trademark of Optibrium Ltd. BioPharmics™ and QuanSA™ are trademarks of BioPharmics LLC.
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QuanSA project application

Active learning to identify a mimic of a macrocyclic natural product

Scaffold replacement as part of an optimization process is a complex
challenge. Using a data set of ~1,100 time-stamped compounds, we applied
an iterative procedure to refine a QuanSA model, starting with a macrocyclic
natural product lead (UK-2A), and rapidly identify a non-macrocyclic fully
synthetic broad-spectrum crop anti-fungal (FPX) [3].

o Natgral product UK-2A: > Florylpicoxamid: = Synthetic
= 4 chiral cepters MET pIC;, = 8.1 MET pICs, = 9.6 = 2 chiral centers
= Macrocyclic Mol-0001 Mol-1109 (FPX) = Non-macrocyclic
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Iterative model refinement efficiently
guided candidate selection to the
desired product.

FPX was identified in round 5 as one

of the most active predicted molecules - //‘\\\ /<.

The model effectively learned the X /\\ﬁkq > .,
non-macrocyclic scaffold. ‘ ”g’ for T
Only 100 molecules were selected vs J ¢l \

Mol-1109 (pICs, = 9.6)
Pred pICs, = 10.0

over 1,000 in the project, representing
a 10x improvement in efficiency.

Conclusions

* QuanSA builds physically realistic causal models based on ligand
structures alone.

* QuanSA and FEP+ are equivalent in accuracy and synergistic, but
QuanSA is ~1000x faster and has a broader domain of applicability.

* Active learning with QuanSA enables more efficient lead-to-candidate
design - 10x in this case study.
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