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Vector goals vs token goals
The more conventional method for passing a goal to a transformer model is 
by converting numerical parameter goals to a discrete set of tokens3, which 
are then appended to the compound string. However, this means that the 
model has to effectively re-learn the numerical meaning of each token, the 
number of tokens in the model vocabulary must greatly increase (and some 
will appear only rarely in the training set), and the total length of the string 
must increase with the number of parameters.

By instead keeping our desired parameter changes as a vector, we can 
completely remove the need to the model to re-learn the numerical values.  
This simplifies and stabilises the training process, resulting in equivalent 
performance with a lower training cost, and enables us to optimise for many 
more parameters simultaneously. Additionally, by appending the embedded 
goal vector after encoding the starting compound, we preserve a unique 
compound embedding which can be used for other modelling purposes.

Rapid AI generation of optimised compound 
designs, guided by user interaction 

Generative AI
We use a transformer-based AI1, 
trained on pairs of related compounds 
encoded as Selfies strings2, and 
parameter vectors. Given a starting 
compound and a set of parameter 
differences, the generative model 
outputs a closely related compound 
with parameters closely matching the 
desired changes. 

We modify the standard transformer 
architecture slightly to allow seamless 
input of a vector of desired parameter 
changes, referred to as the goal vector, 
without conversion to tokens. The goal 
vector is output from the inference 
engine, and then passed through one or 
more fully-connected neural network 
layers to upscale the vector to match
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Figure 3. Generated compound property values as a function of target property value. Shaded 
regions show the StarDrop model uncertainty on each parameter.
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Model performance
Our goal driven model gives state of the art molecular optimisation 
performance, successfully optimising for multiple parameters 
simultaneously.  Fig. 3 shows the optimisation results for 6 QSAR 
parameters, plotting the generated compound properties vs target 
properties. The shaded region shows the uncertainty on the QSAR model 
estimate of each parameter.

Figure 2. Transformer model architecture. 
We use a standard transformer with an 
additional goal embedding block, which 
converts a parameter goal vector to the 
higher dimensionality of the encoded 
starting compound. 

Inference engine
The aim of the inference engine model is to learn, within a small number of 
interactions (typically around 10), an approximation of the user’s desired 
compound properties within a complex multi-dimensional parameter 
space.

The model probabilistically selects compounds, based on an internal 
estimate of the probability of a positive response, to show to the user. The 
user can then respond positively or negatively, and that response is used to 
refine the model’s likelihood estimates. 

Our unique algorithm evaluates the probability of a positive user response 
based on a combination of local information (how has the user responded 
to similar compounds) and global information (what combinations of 
parameters does the user like) to provide a detailed multi-dimensional 
probability map.

Filtering AI compounds
After a few iterations, the inference engine converges on a reasonable 
approximation of a user’s parameter and chemical space preferences. This 
can be used to select new compounds from the pool of AI generated 
compounds to show to the user, ensuring that they only see compounds 
relevant to their goals. This is particularly useful when it comes to 
parameters that the AI model has not yet been trained on, and effectively 
does not know about. The inference engine can be used to optimise for 
these parameters without needing to retrain the AI.

Informing AI generation
The same probabilistic compound selection can be used to choose the 
parent compounds for the next generation of compounds. Similarly, the 
global information  (e.g. “the user wants compounds with high logS”) is used 
to set the goal vector sent to the AI model, guiding the compound 
generation towards those values. The flexibility inherent in this approach 
allows users to rapidly explore compounds with improved parameter 
profiles

Figure 4. Basic interface for the Inference Engine. The user is presented with an AI generated 
compound, generated from a parent compound (either user supplied or a previous AI 
generation). The user may then respond positively or negatively, and may optionally add the 
compound to their own dataset. The plot on the right shows the parameter profile of the 
compound, with the grey shaded bars showing the profile of the parent. 

Figure 1. The core Inspyra loop. 
The Inference Engine shows 
generated compounds to the user 
and learns their preferences from 
their responses. This is then 
passed to the AI, to make new, 
optimised, compounds.

Pairing AI with human expertise
We present a novel AI drug generation system, designed to include human oversight as a 
core part of the generative process. Rather than random compound generation, or 
generation with a predefined goal, we use a unique Inference Engine algorithm to quickly 
learn a user’s parameter preferences, then pass a vector of these to the generative AI.

This coupling of a powerful AI model to human intuition and understanding enables 
precisely targeted compound generation with on-the-fly user defined objectives, and 
benefits from human expert knowledge and experience, avoiding costly retraining and 
greatly reducing the time wasted on generating and filtering out non-viable compounds. 

the internal dimensionality of the generative AI. This embedded goal vector is 
then concatenated on to the front of the encoded compound sequence.

around their starting compounds, avoiding 
costly retraining.
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