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FOREWORD AND RELEASE NOTES

This manual covers the usage of the BioPharmics Platform Modules: Tools (sf-tools.exe), Docking (sf-dock.exe),
Similarity (sf-sim.exe), Affinity (sf-quansa.exe), and xGen (sf-xgen.exe) through their command-line interfaces. The
patented ForceGen approach for conformer generation, implemented within the Tools module, is the fastest and most
accurate approach currently available on normal small molecules and also on macrocyclic compounds. The new eSim
technique also represents a breakthrough in 3D molecular similarity computation. The eSim methodology underpins
many aspects of docking and affinity prediction.

Release Notes

Version 5.193

Minor changes only: 1) More robust parsing for oddly produced MOL2 files; 2) improved behavior with poorly
formed SMILES that fail to indicate protons for bracketed atoms and a new parameter to control final energy window
(-en_final) without affecting search strategy; 3) QuanSA minor bug fix for pose caching during model building; and
4) the sf-dock rms_list command now requires a <max_n> parameter to control how many poses will be considered.

Detailed notes can be found here, and the respective chapters will cover significant changes with specific examples.

Version 5.191

Minor changes only: 1) Bug fixes in fgen3d regarding illegal SMILES strings (e.g. atoms making 11 bonds) to
eliminate crashes when parsing poorly curated molecular databases; 2) fixes to the PSIM command parsing to reduce
brittleness in protein/ligand list specification; 3) additional example of cross-scaffold QuanSA affinity prediction
added to the manual; 4) updates to the xGen PyMol GUI to overcome changes in PyMol v2.6; and 5) inclusion of Mac
binaries for statistical utility commands.

Version 5.189
Minor changes only: 1) a technical change to recognize certain types of ring chirality that is not detectable by topology
(affects regen3d); 2) addition of a final conformer compression option for ForceGen (-nfinal) to allow for conformer
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pool size control following full conformer search; 3) improvements to RMSD calculations for evaluation of docking
quality; and 4) a method to automatically define bounding boxes given collections of aligned ligands.

Version 5.186
The primary changes relate to the inclusion of a new chapter in this manual on Advanced Applications, which include
PROTAC docking, a GUI for real-space ligand refinement using xGen, and bound ligand strain estimation for complex
molecules. In addition, a number of different methods for binding-site definition in the Docking module have been
implemented.

Version 5.173

Minor version release with full examples and manual update. One substantive change: multiple ligand alignment has
been improved with respect to cross-platform behavior using a normalization within pose-clique scoring. To furn off
this new default behavior, in the Similarity module use -me_norm and in the QuanSA module use —~clnorm. A bug in
score parsing within the docking pose family method has been fixed, resulting in improved pose rankings, especially
when no prior ligand knowledge is being used.

Version 5.164
Minor version release.

1. eSim: Fixed memory leak when using -poscon

2. Tools: Implemented new behavior for torsional restraints. Given multiple fragments that match to separate parts
of a molecule to be searched, the individual fragments create positional restraints so that a linker between the
two parts will keep them in geometrically correct positions. Adherence to the geometry restraint is done through
the -pospen and -pwiggle parameters.

3. Tools: Provide the ability to turn off inclusion of torsional restraints in SFDB conformer files. Useful if one
wants to restrain conformer search but not restrain deviations in downstream calculations like docking and
similarity optimization.

Version 5.162

Tools Module: 1) improvement in enforcement of torsional restraints during fgen3d (and regen3d) procedures; 2)
fixed issue with parsing variant SDF files with non-standard tags; 3) added tautomer recognition for imide/amide
proton shift; and 4) increased max SDF tag line width to 2000 characters. Docking Module: 1) changed default PDB
ligand parsing size to 100 heavy atoms; and 2) fixed bug in reporting of polar component of docking scores. QuanSA
Module: fixed issue with reading named molecules where molecules are repeated within an SFDB. ESim and xGen
Modules: no significant user-facing changes. Additional minor bug fixes within all Modules.

Version 5.142
Minor additions and changes within all Modules. Please see the beginning of each specific chapter for details.

Version 5.125
Minor additions and changes within the Tools, Similarity, and QuanSA Modules. Please see the beginning of each
specific chapter for details.

Version 5.114
Minor version release: fixed minor bugs in Tools modules along with minor bug fixes and enhancements within the
eSim module.

Version 5.111
Minor version release.

1. New behavior in the sf-tools profile command:
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(a) If a reference molecule is provided, the atom name and residue information (if present) in the reference
molecule structure will be copied over to the input molecule so that the key output files (e.g. <outprefix>-
match.mol2) will contain those annotations. This can be helpful in workflows that involve peptidic ligands
and NMR restraints.

(b) In cases with very large numbers of conformers in the molecule to be profiled (> 5000), calculation of
nearest-neighbor RMSD and average RMSD to all other conformers is skipped. This avoids poor scaling
behavior in situations where conformational profile reports are desired for extremely large conformer
pools. NOTE: it is not recommended to generate pools of such size, as we have yet to identify a use-case
where agnostic conformational search yielding pools of more than 2000 conformers (e.g. from -pextrm
preparation) is appropriate.

Addition of ext_sfdb_sdf command to sf-tools: extracts the contents of an SFDB to SDF format, with per-
conformer energy values reported. This can be used, for example, instead of the profile command in situations
where NMR constraints are not being used, but where knowing the MMFF94sf energy value for each conformer
is desired.

. Addition of compress_rms and compress_n utilities to sf-tools:

(a) The former uses the RMSD threshold from the -rms option to compress the input SFDB or molecule list.
RMSD calculations are done with symmetry correction, so that the resulting pools are non-redundant. The
command will produce fewer or the same number of conformations as provided in the input.

(b) The latter uses the RMSD threshold from the -strict_rms option and the number of conformers provided
by the -nconfs option. All conformers that are redundant according to -strict_rms are discarded. Then,
the redundancy threshold is progressively increased until the resulting conformer pool has fewer or equal
members than -nconfs.

Addition of the comp_ensemble command to sf-tools: provides statistics of the closeness by RMSD of two
conformer ensembles. Automatically identifies macrocyclic ring systems.

. Improvements to thread-safety for PSIM and GrindPDB operations. The new command grindpdblist is multi-

threaded and much faster than running grindpdb serially. The psim_align_all function is now multi-threaded,
with near linear speedup with increased computing cores.

Ligand kekulization and protonation is more robust and consistent, providing cleaner operation on 3D structures
lacking protons.

Added -min_output option to sf-dock (analogous to sf-sim)

Added -min_2way to sf-sim (turns on +two_way and sets min corresponding output score)

The full set of examples have been run with the v5.111 Linux binary on the reference platform.

Version 5.101

Minor version release: the 5.101 release introduces the xGen module, which implements a new approach to real-space
fitting of ligands into X-ray density maps. The full set of examples have been run with the v5.101 Linux binary on the
reference platform, and the examples have been amended to include the xGen module.

Version 5.001

Major version release: the full integration of more sophisticated force field and partial charge modeling into the
BioPharmics Platform is now complete, with all aspects of conformer search, docking, molecular similarity, and
affinity prediction now benefiting from uniform technical underpinnings. The 5.001 release introduces relatively
minor changes within each of the modules relative to the latest revision of the v4.5 release.
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1. The Tools module includes improvements in ligand Kekulization, constrained minimization, and constraint-
based conformer search. Default behavior has changed for heuristic protonation (heuristic protonation is turned
on by default rather than assuming that formal charges in .smi or .sdf files are intended).

2. The QuanSA module incorporates improvements in the manner in which crystallographic data can be used
to guide model building as well as improvements in the model refinement process when adding new training
molecules.

3. The Sim module contains improvements in multiple-ligand alignment.

4. The Docking module now implements a blended approach to electrostatics, combining a Coulombic approach
with the pre-existing directional hydrogen-bonding method, and the eSim method has been integrated into the
docking process and pose family generation process.

The full set of examples have been run with the v5.001 Linux binary on the reference platform.

Version 4.543
Minor version update:

1. The substantive changes are focused on reducing cross-platform variability in the Tools module that are the result
of tiny differences in floating point calculations that can accumulate over complex optimization procedures.

2. The default values controlling multiple ligand alignment within the Sim and QuanSA modules have been
changed slightly (the number of conformers to use in the initial NxN molecular alignment has been changed to
50, the RMSD threshold for difference between alignment cliques has been changed to 0.1, and the number of
molecules to use in the NxN initial alignment has been changed to 10).

3. Minor bug fixes were made in the behavior of the —~strict_rms parameter and in the interpretation of SDF files.

4. The Linux Inte]l OMP library 1ibiomp5.so has been added to the distribution. If loading errors are encoun-
tered, add this library to a directory within the LD_LIBRARY_PATH. Also, if the error "invalid $N$ use
detected" is encountered, this library should be used in place of the default GNU OMP dynamic library. The
libraries loaded by the Surflex platform can be identified by running "1sof -p <pid>" where the process ID
of a running Surflex module is given.

The full set of examples have been run with the v4.543 Linux binary on the reference platform. The examples depicted
in the manual may differ slightly, having been run on the initial 4.5 release.

Version 4.520

Minor version update of the initial v4.5 release (v4.511). Detection and elimination of symmetry-related conformers
in the Tools/ForceGen procedure was added (with the —strict_rms parameter, see the Tools chapter for details).
Also, an experimental procedure for considering aqueous to membrane transitions involving dielectric changes has
been implemented (with ad just_diel, see the Tools chapter for details). Other minor changes include bug fixes and
elimination of small memory leaks. The full set of examples provided with the v4.520 distribution were run with the
current release on the reference architecture. Note that the examples in the manual were run using v4.511, and the
changes in conformer generation lead to small differences.

Version 4.5

Version 4.5 of the BioPharmics Platform introduced the new eSim methodology for all molecular alignment operations
in the Sim and QuanSA modules. The eSim approach is both more effective and faster than all other widely used
approaches that are at all competitive in terms of results quality. Also, major speedups were made by making use
of multi-core hardware when available in all four Surflex modules, including Surflex-Dock. Version 4.5 made minor
changes in command syntax to take advantage of a new compressed molecular file format (the SFDB format).
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Version 4.4

Version 4.4 made very significant improvements in conformer search, and it added multi-threaded operation to both
the Tools and QuanSA modules. The conformational search methods are now the fastest available search methods on
non-macrocycles while producing conformer pools of greater depth and quality. For macrocycles, the methods are
very substantially faster than all available methods, and the accuracy exceeds the most exhaustive alternative methods
that take 10-1000 times as long. Extensive benchmarking has been done, with the results published in early 2019 and
augmented with a number of follow-up papers.

Note:

There may be minor variations between the figures shown in the manual and the precise results shown in the software
distribution. There are no statistically significant differences, but, for example, the Nt" ranked solution indicated in
the manual may correspond more closely to the (N-1)*¢ in the actual distribution. The variations are due to small
algorithmic changes across minor version increments as well as cross-platform and compiler differences.
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The SFDB file format makes use of an open-source compression method called LZ4.

LZ4 - Fast LZ compression algorithm
Copyright (C) 2011-present, Yann Collet.

BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this 1list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You can contact the author at
- LZ4 homepage : http://www.lz4d.org
- LZ4 source repository : https://github.com/1z4/1z4



CHAPTER 1

PROGRAM INSTALLATION

The Surflex platform contains separate modules for docking (Surflex-Dock, which also incorporates algorithms for
protein pocket detection and comparison), molecular similarity (Surflex-Sim), QSAR (QuanSA), and real-space X-ray
density fitting (xGen). These modules are all supported by the Surflex-Tools module, which implements algorithms
for ligand preparation and manipulation. Each module has a simple command-line interface. The manuals have
been combined into this single document, because the interface style and semantics are closely related across the
applications. This short chapter addresses program installation.

1.1 DISTRIBUTION STRUCTURE

The distribution is divided into three directories: this document is found under the “doc” directory, with binary
executable code under “bin,” and examples described within the manual under “examples.” The executables for all
platforms are in “bin”. Directly under that directory, named binary files for version and platform exist. For convenience,
the executables are also copied to standard names under architecture-specific directories (e.g. “bin/linux/sf-dock.exe”).
Users can either copy the contents of the architecture-specific bin directory to someplace on their executable path or
they can add the proper bin directory to their path. Also within “bin” are directories called “data” and “util” which
contain relevant data files and utility programs/scripts, respectively. The contents of the examples directories will be
described in succeeding chapters.

1.2 LICENSING FILES

The Surflex modules are typically licensed as a bundle, with binary executable access to all modules on Linux,
Windows, and Mac platforms. Under this type of license, you will have received a licensing file (typically called
surflex_bin.lic). The Tools, Dock, Sim, xGen, and QuanSA modules can all be run with these license files. A valid

BioPharmics Platform Manual. By the Documentation Technical Team 1
Copyright (©) 2024 BioPharmics LLC



2 PROGRAM INSTALLATION

licensing file is required for the Surflex modules to run. The licenses are set up to be simple to install and use, requiring
no license server or node locking. The licensing agreement that governs use of the software addresses any limitations
on acceptable use and installation.

The preferred method for identifying the location of the license file and for other provided data is to set an environ-
ment variable called SURFLEX_ROOT to the directory where the distribution is location (e.g. “/share/packages/SF-
Full-Distribution” on Linux or Mac or something like “C:\Packages\SF-Full-Distribution” on Windows). The license
file should be placed in this folder. In a multi-user environment, it may be advisable to put the distribution and license
file in a central location, to be accessed by any authorized user.

Another method, suited for individual users, is to place the license file in a user’s HOME directory. If the
environment variable “HOME” is set, and the license file is in that directory, it will be found. This works well on
Windows, Mac, and Linux (for Windows, one needs to explicitly set the HOME environment variable). Note that it is
still preferable to set the SURFLEX_ROOT directory as instructed above so that other files can be found automatically.

For backwards compatibility, an older method of directly pointing to a license file is provided by setting an
environment variable called SURFLEXLIC to the pathname of the file (e.g. ‘“/share/packages/surflex/surflex_bin.lic”).
If none of these methods finds a license file, Surflex will look for the license in the following directories: C: (the
normal root of a Windows file system), /ust/local/bin, and in the current directory in which Surflex is invoked.

In the following chapters, for each module, the overall command-line parameters will be listed first. Following
that, use of each module will be detailed (the Surflex-Dock chapter will include detailed description of the shared
commands and options among the modules). Examples relevant to each program will complete each chapter. These
examples will refer to those provided in the standard binary distribution.

1.3 NOTES ON RECOMMENDED PROTOCOLS

In making use of any Surflex module, molecular preparation is critical. In particular, molecules must be protonated as
expected in the relevant physiological condition. Commands are provided to aid in molecular preparation of ligands
and aspects of protein preparation as well, but details of protonation variants for metal-containing enzymes and specific
tautomer choices should be carefully considered by the user and addressed manually if need be. For each module, there
are recommended protocols, which should be followed to obtain results that are similar to those found in the relevant
published work. For example, when running either Surflex-Dock or Surflex-Sim, the recommended protocol is to
select a parameter scheme for the intended application. For virtual screening, this will usually involve the -pscreen or
-pfast options, and for optimal pose prediction one will select the -pgeom or -pquant options.

The Surflex-Tools module provides ligand preparation tools for 2D to 3D conversion, protonation, and confor-
mational elaboration including sophisticated ring search of both non-macrocycles and macrocycles. The ligand
preparation tools are controlled by parameter selection regimes for the intended use of the molecules: -pscreen for
virtual screening, -pgeom for pose prediction, and -pquant for affinity and pose prediction within the QuanSA module.
Faster variants also exist and are described later.

For QuanSA in particular, special care must be taken with molecule names so that data provided on molecular
activities matches with the structures provided. It is advisable to make use of the recommended directory structure
and naming conventions when using the QuanSA module.

1.4 NOTES ON USE OF MULTIPLE THREADS

All Surflex modules now make use of multiple computing cores by default. This can result in very significant
speedups on modern hardware. The reference architecture for production is a many-core Xeon-based Ubuntu Linux
workstation. The default number of threads to be used is nominally 36 in all modules, unless the user explicitly sets
the ¢ ‘OMP_THREAD_LIMIT’’ environment variable, in which case the user choice will be used.

The recommended manner of user control for core utilization is to set the environment variable OMP_THREAD _LIMIT.
Generally, it is best to limit the total number of threads to the total number of physical computing cores on the target
hardware. For example, on a 36 physical-core workstation, the following line ¢ ‘export OMP_THREAD LIMIT=36’"
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should be present in the . bashrc file. By limiting thread utilization in this manner, flexibility is afforded the algorithms
in dynamically making use of teams of computing threads within different procedures (including nested ones).

One can change thread utilization from the default value by using the -nthreads argument within each module to
specify a particular number of computing threads to be used. This can be greater or less than the default value, but the
operating system may set an upper limit that cannot be over-ridden. We are experimenting with different strategies for
resource utilization, and changes in thread utilization behavior will occur over time.

1.5 PREPARATION FOR DIFFERENT OPERATING SYSTEMS

The BioPharmics Platform is primarily supported as a set of command-line modules, though integration with multiple
graphical modeling platforms is planned (e.g. Surflex-Dock is currently accessible via the MOE product of CCG and
the pose generation module within the StarDrop product of Optibrium). For any modern Linux variant, the standard
tools available within any shell will suffice. Some of the more extensive scripts within the use-case examples rely on
standard commands such as wget, gzip and gunzip, tar, awk, head, tail, sort, and grep. Of these, only wget and gunzip
are practical requirements, as they support the downloading and processing of large numbers of PDB files.

The Linux Intel OMP library 1ibiomp5.so has been added to the distribution (under the bin/linux directory),
and it may be required on certain Linux variants. If loading errors are encountered, this library should be added to a
directory within the user’s LD_LIBRARY _PATH (or the LD_LIBRARY _PATH should be defined to include wherever
the 1ibiomp5. so file is). Also, if the error "invalid $N$ use detected" is encountered, this library should be
used in place of the default GNU OMP dynamic library. The libraries loaded by the Surflex platform can be identified
by running "1sof -p <pid>" where the process ID of a running Surflex module is given.

For Windows, the recommended way to run Surflex command-line modules is within the Cygwin environment (see
www.cygwin.com). The minimal base packages are sufficient, and it is recommended to install the 64-bit version of
Cygwin. Users will need to ensure that the Cygwin binary directory is on their executable path. The easiest way to set
this up is to search for “environment variables” within the Control Panel and edit the system path by appending the
Cygwin binary directory to the end of the path list. It is also wise to set a sensible “HOME” environment variable.
Licensing files can be placed in the HOME folder, and binary files can be copied to the Cygwin binary folder.

For Mac, setup is slightly simpler than for Windows, because the modern MacOS is built on top of a Unix variant.
The recommendation is to follow these steps:

# Open a Terminal window using the Terminal app

3 # Install minimal command-line and development tools:

> xcode-select --install # Accept the default suggestions.

# Install the HomeBrew package manager (single line):

7 > /usr/bin/ruby -e "$(curl -£fsSL

https://raw.githubusercontent.com/Homebrew/install/master/install)"

# Install openmp library support:
> brew install libomp

# Install the web utility wget:

: > brew install wget

5 # Install the plotting utility gnuplot with AquaTerm:

> brew install Caskroom/cask/aquaterm
> brew install gnuplot --with-aquaterm --with-qt4

Note: it is required to install the OpenMP library support, as multi-core processing is now enabled and present within
all BioPharmics Platform modules.

For Mac architectures that rely on ARM-based processors (e.g. the M2 CPU), some additional work is required to
set up the libomp library. The simplest fix, which should work for most situations is to copy libomp.dylib (located
in the binary Mac distribution folder bin/mac/) into /usr/local/opt/. That will allow the OS to correctly locate
the OMP library required by the binary executable files.
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A more complex but more “correct” fix can be accomplished as follows:

# Homebrew needs to be installed in two places on Apple silicon

# 1) /opt/homebrew for ARM64 (default location on Apple silicon)

# 2) /usr/local/ for Intel code (the compiled BioPharmics Platform Mac binaries are Intel)
# Open a shell window and run the following:

> arch -x86_64 zsh

> cd /usr/local && mkdir homebrew

> curl -L https://github.com/Homebrew/brew/tarball/master | tar xz --strip 1 -C homebrew

# OR (within a shell window)
> /usr/sbin/softwareupdate --install-rosetta --agree-to-license

> > arch -x86_64 /bin/bash -c "$(curl -fsSL

https://raw.githubusercontent.com/Homebrew/install/master/install.sh)

# Then install libomp:
> arch -x86_64 /usr/local/homebrew/bin/brew install libomp

# Last, create a soft link or copy the libomp folder to /usr/local/opt/

On a Mac, the best place to put Surflex license files is within your home directory. The best place to put executable
files is in “/usr/local/bin” which is already on the default executable path on modern Apple laptops and desktops.

1.6 MOLECULAR VISUALIZATION

All of the figures in this document were produced using PyMol, which can be obtained free of charge. Within the
examples, PyMol .pml files can be used to generate visualizations of results as are shown in the Figures. The scripts
access PyMol via the alias “pym” which causes the command “pymol -Q” to be executed.
Within the .pml files, a number of PyMol aliases are used. The following .pymolrc file defines them:

set valence, 1

set stick_radius=0.20

alias z, zoom visible, 3, state = -1

alias s, show sticks; hide (h. and (e. c¢ extend 1))

alias hp, hide (h. and (e. c extend 1))

alias unlabel, label visible, ""

alias square, viewport 500, 500

alias thin, set stick_radius=0.10

alias thick, set stick_radius=0.20

alias all, set all_states, on

alias one, set all_states, off

Plans for more complete integration of the various Surflex modules into user-friendly GUI-based modeling suites is
underway.

One PyMol GUI (for xGen ligand refinement) is now distributed with the BioPharmics Platform (see the Advanced
Applications Chapter for details). It was initially developed for PyMol version 2.4. Later versions (including the v2.6
LTS PyMol release), contain a misnamed DLL on Windows. The program mtz2ccp4_px.exe requires an Intel FFT
library and looks for mk1_rt.d11. Unfortunately, the PyMol distribution’s updated library is named mk1l_rt.2.d11.
Attempting to load an MTZ file into PyMol results in nothing happening. This can be fixed by navigating to the
following folder in the PyMol installation: Schrodinger/PyMOL2/Library/bin/ and renaming mkl rt.2.d11 to
mkl rt.dll.

One can test the fix by loading an MTZ file into PyMol and looking for the omit maps that are provided in standard
PDB-deposited structures. Another method is to execute the mtz2ccp4_px command in a shell/console window, as
follows to see a usage message:

> cd ~“/AppData/Local/Schrodinger/PyMOL2/Library/bin
> ./mtz2ccp4_px.exe

;5 Usage: mtz2ccp4_px.exe <space_group> <a> <b> <c> <alpha> <beta> <gamma> <reso_high>
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Preparation of ligand and protein structures is critical to produce sensible and reliable predictive molecular modeling
results. The most crucial aspect is protonation, but issues of internal energetics can also be quite important. With
respect to protonation, all BioPharmics Platform programs expect molecules to be protonated as expected in the
relevant physiological condition (and including explicit non-polar hydrogen atoms). The Tools module provides
utilities that aid in preparation (described below). However, aspects such as tautomer choice and special protonation
states for metal chelation moieties are the responsibility of the user.

The Tools module provides ligand-focused methods for SMILES string to 3D conversion, protonation, ring search,
and conformational elaboration. Validation of 3D structure generation and conformational elaboration has been
published, with very extensive comparative validation on non-macrocycles and macrocycles [1, 2].

Because different levels of exploration in conformational space are possible, ligand preparation should be done
with the application in mind. By default, ligand preparation is done in a fast but thorough enough manner to make
for accurate pose predictions (the -pgeomf parameter set). Optionally, users may choose to prepare ligands for
rapid screening using the —-pscreen or —-pfast parameter sets (the latter of which does not explore new ligand ring
conformations). For quantitative affinity prediction (or particularly detailed pose prediction), the -pquant parameter
set should be used. These different protocols affect the total number of initial conformations that will be produced
with the sampling procedure, as well as how deep the elaboration of flexible ring systems will be. Note that all of the
other Surflex modules will perform additional conformational exploration, certainly including local optimization and
possibly including more significant variation.

Multi-threaded computation is ubiquitous in the Tools module. By default, during conformational search (forcegen
or ligprep commands), the module will allow the operating system to decide how many computation threads to
allocate. Generally, for simple molecules, setting the number of threads equal to the number of physical hardware
cores will produce the fastest per-molecule times (e.g. -nthreads 36 on a 36-core workstation). For complex
molecules (e.g. macrocycles), setting the number of threads to be equal to the number of usable threads is best (e.g.

BioPharmics Platform Manual. By the Documentation Technical Team 5
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-nthreads 72 on a 36-core workstation capable of hyperthreading with 2 threads per core). This varies somewhat
depending on machine architecture and operating system, so benchmarking different thread counts is recommended.

However, maximal speed per molecule is different that maximum throughput, which is the total number of molecules
that can be processed in a fixed time by fully utilizing the compute capabilities of a given architecture. If maximal
throughput is desired (e.g. when preparing a large database), then running multiple parallel single-threaded calculations
(e.g. using the -multiproc option) is best.

An option for making use of NMR data in constraining macrocycle search has been added (the -molconstraint
option) along with a command for profiling a conformer pool against a set of NMR constraints (the profile command).
These features are now in beta release and are being refined with collaborators.

2.1 SURFLEX-TOOLS COMMAND LINE INTERFACE

Note that there may be minor variations between the figures shown in the manual and the precise results shown in
the software distribution. There are no statistically significant differences, but, for example, the N*" ranked solution
indicated in the manual may correspond more closely to the (N-1)%% in the actual distribution. The variations are due
to small algorithmic changes across minor version increments as well as cross-platform and compiler differences.

This is the command-line help listing of Surflex-Tools:
I BioPharmics Platform Version 5.193
3 Usage: surflex-tools <options> <command> args

5 [LIGAND PREP PARAMETER SELECTION CHOICES]
POSE PREDICTION: Normal preparation mode

-pgeomf Pose accuracy parameter set, fixed max ensemble size 250 [DEFAULT]
-pgeom Deeper ring search + macrocycles, max 250
9 VIRTUAL SCREENING: Recommended modes
-pscreen Screening parameter set, variable max 50/120 [RECOMMENDED]
11 -pfast Screening parameter set, max 50
-pfastf Extremely fast screening preparation, max 50
13 AFFINITY or DETAILED POSE PREDICTION: Recommended modes
-pquant Deep ring+conformer search including macrocycles, max 1000
15 -pquantf Deep conformer search (macrocycles off), max 1000

17 [LIGAND COMMANDS]

smiles SmilesString molname
19 smiles_list SmilesFile outprefix
fgen3d Smiles_or_SDF outprefix
21 Following options apply to smiles/smiles_list/fgen3d:
+reprot (+-) Protonate using heuristics for physiological pH
-chelate (+-) Deprotonate chelation motifs (e.g. hydroxamic acids)
-molid (SDF_Tag) Specify molecule ID tag (e.g. "Compound ID" def: mol title)
25 -failthresh (7.00) Energy per atom failure threshold for 3D generation
-3dfast (+-) Use faster 3D generation
forcegen PathList_or_MolArchive outprefix (AKA ligprep)
29 +-macrocyc (+-) Macrocycle searching (OFF, +macrocyc OR -pgeom OR -pquant --> ON)
+-findbeta (+-) Look for and enforce beta sheet h-bonding (def: OFF)
-nfinal (¥) Final max ForceGen output confs (default -nconfs value)
-en_final (*) Final energy window (default -enthresh value)
-nconfs (250) Depth of ForceGen search, bound on output confs per molecule
+-dumpall (+-) Dump all non-redundant conformers, even high energy (default OFF)
35 +ring (+-) Ring search
-ringrounds (3) Max rounds for ring elaboration
-enthresh (10.0) The energy window above minimum for conformational searching
-rms (0.25) Redundancy RMS for conformers
39 -strict_rms (0.10) Strict RMS for conformers

41 -enum_chiral (0) Max number of unspecified chiral centers to enumerate
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—max_enum

-racemize_list

-racemize

-multiproc npc

-nthreads

prot
+fp
+reprot
+mark_chiral
+misc_remin
-chelate

min
-pospen
-pwiggle

energy

fgen_deep
-nlevels
-levelwidth
-maxwidth
-maxtime
-en_window
-deep_divrms
-deep_clrms

-torcon
-torpen
-twiggle

-sfdb_torcon
-mmdielectric
-molconstraint <cfile>

+-qmin

extract_sfdb
subset_sfdb
make_sfdb
ext_sfdb_sdf
ext_sfdb_1sdf
combine_sfdb

ransel_sfdb

apply_poscon

ran_archive

regen3d

profile
+pcenter

rms_conflist

comp_ensemble

comp_ens_min

reorder

get

mget

mgetnum

info

rms

splitmols

mergemols

SURFLEX-TOOLS COMMAND LINE INTERFACE

(8) Max number of alternate isomers to keep based on energy/diversity
(none) File with molecule name list to be forced as racemic if chiral
(+-) Force racemic mixtures for all chiral molecules

pnum NPC processor run, current processor is PNUM (e.g. 8 1-8)
Affects behavior of forcegen/smiles_list/fgen3d
(%) Maximum number of threads to use

mol_or_mollist output_prefix
(+-) Full reprotonation
(+-) Protonate using heuristics for physiological pH
(+-) Explicitly mark chirality as specified by 3D structure
(+-) Minimization after protonation
(+-) Deprotonate chelation motifs (e.g. hydroxamic acids)
mol_or_mollist output_prefix (SF_charging AND constrained minimization)
(5.0) Penalty for deviating from input geometry (kcal per Angstrom~2)
(0.2) Wiggle room for from input geometry
molecule_file output_prefix

PathList_or_MolArchive outprefix

(4) Levels of deep search

(12) Breadth of deep search

(12) Max tries for breadth of deep search
(12.0) Max time of deep search (hours)
(20.0) Final energy window

(0.10) Final RMSD diversity cutoff

(1.00) Clustering RMSD

[MOLECULE SEARCHING CONSTRAINTS]

<frags> Molecular fragments (multi-mol2) to constrain conformation
(0.05) Penalty for torsional deviation (kcal per deg~2)
(5.0) Amount of free wiggle with zero penalty (degrees)

Turn OFF inclusion of torcon terms in output SFDB (default ON)
Dielectric constant for internal ligand energetic calculations
Constraint file on distances and torsions (e.g. from NMR)

Use new approach for distance constraints on confusable
protons. Approximates 1/r"6 averaging (default OFF).

(80.0)

[MISCELLANEQUS COMMANDS]

input.sfdb outprefix

namelist input.sfdb outprefix

SearchedMolList outprefix

input.sfdb outprefix

input.sfdb outprefix

SFDBList outprefix [Combines SFDBs for a SINGLE MOL into one SFDB]
[-en_window and -deep_divrms]

input.sfdb proportion outprefix

poscon-frag input.sfdb out-prefix

mol2archive ranarchive-prefix

mol2archive newarchive-prefix (may be used with -torcomn)

conf_pool.sfdb ref_conf.mol2 out-prefix

Turn ON centering of ref conf (default OFF)

inmol2archive.sfdb goldmol2archive.<mol2/sfdb> out-prefix

inmol2archive.<mol2/sfdb> goldmol2archive.<mol2/sfdb> out-prefix

inmol2archive.<mol2/sfdb> goldmol2archive.<mol2/sfdb> out-prefix

mol2archive proportion outputarchive

mol2archive molname outmolname

mol2archive molnamelist outmolarchive

mol2archive molnumberlist outmolarchive

mol

moll mol2

mol2archive

mol2archive

outprefix [splits the archive into prefix-molnames.mol2]
outprefix [merges all mols in archive into a single mol]

7
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prettysdf mol2archive outprefix [strips unneeded H and FLATTENS molecules]
parse_sdf sdfarchive outprefix [Parse tagged data in SDF]

-molid (SDF_Tag) Specify molecule ID tag (e.g. "Compound ID" def: mol title)
adjust_diel conf_pool.sfdb start_diel end_diel outprefix
bm_ensemble conf_pool.sfdb [ref_conf.mol2 OR "none"] outprefix

-bm_nbest (100) Number of confs to fully minimize

-bm_ntweak (5) Number of tweaks to make

-bm_twsize (0.01) Size of random tweaks

-bm_rms (0.01) Redundancy elimination RMSD
compress_rms InMolList_or_SFDB outprefix (option: -rms <val>)
comp_macrms InMolList_or_SFDB outprefix (option: -rms <val>)
compress_n InMolList_or_SFDB outprefix (options: -nconfs <val> -strict_rms <val>)
bound_energy conf_pool.mol2 [xgen prefix OR "none"] outprefix

-bwiggle (0.1) Wiggle room deviation input geometry

-bwigpen (1.0) Penalty for deviating from input geometry (kcal per Angstrom~2)

unbound_energy conf_pool.sfdb outprefix

All commands should be typed lower-case. Molecular output is generally in Sybyl mol2 format, and this is the
preferred input file format as well, but MDL mol/sdf files will also work.

The Tools module is primarily used for ligand preparation: 2D to 3D conversion and conformer elaboration.
Conformer generation is both fast and accurate (for details, see and references [1, 2]) for different tasks (screening,
pose prediction, and affinity prediction) and for different types of small molecules including macrocycles.

Depending on the intended application, there are seven user-selectable parameter modes:

1.

2.2

-pscreen: recommended for preparation of all but the very largest databases for virtual screening (50 or 120
max conformers per molecule depending on ligand flexibility)

-pfast: an alternative to -pscreen where a reduction of the total number of conformers per molecule is important
(50)

-pfastf: very fast conformational search, recommended for preparing extremely large compound databases (50
conformers max per molecule)

-pgeomf (DEFAULT): appropriate for fast geometric sampling of ligands (250)

. -pgeom: for more thorough geometric studies, including macrocycles (250)

-pquantf for preparation of molecules in affinity prediction workflows (1000)

-pquant: for more accurate preparation of molecules (including macrocycles) in affinity prediction workflows
(1000)

PRIMARY CHANGES IN CURRENT VERSION

General notes about the current version can be found in the Release Notes in the Foreword to this manual. Detailed
notes can be found here.

23

2D (SMILES OR SDF) TO 3D MOLECULAR STRUCTURES

Prior to the Version 4.0 release, the BioPharmics Platform relied upon users having other means to produce 3D
structures of ligands. With many different protocols, frequent problems were observed, principally with fidelity to
specified chirality and with high-energy sub-structures such as cis-amide configurations outside of rings. In order
to address these issues, and to provide an all-in-one solution for many small-molecule modeling needs, 2D to 3D
structure conversion has been introduced. The SMILES format has become ubiquitous, both from the perspective of
widely used programs (e.g. ChemDraw) and databases (e.g. ChEMBL). Because the format is also unambiguously
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specified with respect to chirality and formal charge, it is the preferred format supported for producing 3D coordinates
de novo.

However, 2D SDF formatted files are also supported. Care must be taken when using hash/wedge notations for
specifying chirality, especially in complex bridged ring systems. The meaning of the hashed bond is that the atom
at the wide end is away from the viewer (i.e. into the paper or display), and the meaning of the filled wedge is that
the atom is foward the viewer. Rotation of the orientation of a 2D molecule will not affect the chirality specification.
However, flipping a molecule vertically or horizontally or moving the location of an atom attached to a chiral center
such that it changes the geometric ordering will change the chirality specification. Note also that SDF files may or
may not record an indication that the drawn geometry of double bonds is an explicit specification of their geometry.

Currently, only tetrahedral chirality and cis/trans configurations of individual double bonds are currently supported.
Less common types of chirality are not currently supported (e.g. tetrahedral allene-like systems, square planar centers,
or trigonal bipyramidal centers). The 3D structure generation feature includes extensive control over the interpretation
of chirality within molecules, with support for enumerating unspecified chiral centers as well as indicating whether
specific molecules are pure racemic mixtures when containing more than a single chiral atom.

Ligand preparation, especially regarding protonation and tautomer choice can be critical. Surflex-Tools does not
currently offer an automatic means to enumerate tautomers. Users must provide all expected tautomeric variations
of a molecule as separate molecule files. In cases where protons are absent (e.g. in 3D SDF files from the PDB),
Surflex-Tools provides an automatic means to add protons to ligands, and effort is made to heuristically choose
protonation states for common acids and bases such that they will be protonated sensibly assuming a physiological
pH. For example, primary, secondary, and tertiary amines will receive formal charges of 1 and will have an extra
proton added, as will groups such as amidines. Carboxylic acids will be deprotonated, with a formal charge of -1.
However, there are cases of importance where specific moieties may have a context dependent behavior. For example,
terminal sulfonamides on ligands acting as inhibitors of zinc-containing enzymes (as seen with carbonic anhydrase)
will generally have a charge of -1, with the remaining H-N-SO2-R torsion being quite free to rotate. The user is
responsible for addressing unusual protonation states.

Note that because MMFF is the core forcefield, only small molecules with atoms including [CN O SPHFCII
and Br] can be processed (and proteins may also include chelated ions).

The smiles command is used as follows:

# Directory: examples/tools/ligand_2d_3d_conversion

> sf-tools.exe -reprot smiles "CC(=0)0C1=CC=CC=C1C(0)=0" aspirin-neutral
. > sf-tools.exe -reprot smiles "CC(=0)0C1=CC=CC=C1C([0-]1)=0" aspirin-charged

10

> sf-tools.exe smiles "CC(=0)0C1=CC=CC=C1C(0)=0" aspirin

# KEY OUTPUT FILES:

# aspirin-neutral.mol2 Neutral acetylsalicylic acid

# aspirin-charged.mol2 Deprotonated acetylsalicylic acid
# aspirin.mol2 Deprotonated acetylsalicylic acid

The default behavior of the command is to respect the specified formal charges within the given SMILES string
and to fill the valence of each heavy atom in the conventional manner. The first two invocations of the command
produce two different 3D structures based on the difference in the specified formal charge on the acidic oxygen atom.
The third invocation takes a nominally neutrally charged specification and produces the deprotonated form because
the +reprot flag is the default behavior. At physiological pH, it is expected that the molecule will be seen in its
negatively charged state. The output molecules from the three smiles commands are shown in Figure 2.1.

The proprietary algorithm that implements 3D structure generation does not rely on distance geometry or templates,
rather making use of serial application of an iteratively more stringent molecular forcefield that has special terms to
enforce chirality constraints and other heuristic conformational preferences. We have done extensive quality control
to manually verify correct chirality from input SMILES in many cases, especially complex ones with multiple fused
and/or bridged ring systems. In cases where we have found a discrepancy between the 3D structure generated and a
definitive 2D depiction, the problem has been traced to the SMILES string itself. However, cases in which incorrect
structure generation appears to occur should be reported. Note that cases in which some chiral centers are specified
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aspirin-neutral aspirin-charged aspirin
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Figure 2.1 Aspirin structures resulting from the three example smiles commands.

and others are not will produce correct configurations for the specified centers but arbitrary configurations for the
unspecified ones.

The drugs morphine, atropine, tetracycline, testosterone, and taxol all represent challenging structures, both for
correct 2D to 3D conversion as well as for generation of quality ring conformations. The smiles_list command
allows for processing multiple SMILES strings, specified one per line in a file with a name as the second field on
each line. If the molecule name field is omitted, molecules will be named based on their sequence in the files. The
command runs as follows:

# Directory: examples/tools/ligand_2d_3d_conversion

> # FILE CONTENTS: Example-Smiles (each line: <SMILES> <molname>)

4

16

CN1C2CCC1CC(C2)0C(=0) [C@H] (CO)C3=CC=CC=C3 atropine
[HI[Ce@]120C3=C(0)C=CC4=C3[C@Q@I11CCN(C) [Ce]([H]) (C4)[C@I1([H])C=C[CQ@Q@H]20 morphine
> sf-tools.exe smiles_list Example-Smiles example

# NOTE: The fgen3d command will convert .smi and .sdf files
> sf-tools.exe fgen3d Drugs-Smiles.smi drugs

> # KEY OUTPUT FILES:

# example.mol?2 Set of single 3D conformers for each SMILES string
# drugs .mol2 Set of single 3D conformers...

# Look at the 3D examples
> pym disp.pml

Inspection of the 3D conformers (Figure 2.2) shows that the correct structures were generated. Note that while the
particular configurations are not unreasonable, they are generally not optimal, especially for complex ring systems. The
2D to 3D conversion produces structures at a local energy minimum (not a global minimum). For example, the dmp
structure within the examples has a relatively high energy ring conformation from the 3D generation procedure. The
next major section will discuss procedures for conformer elaboration, which include comprehensive ring conformer
search. The examples/tools/ligand 2d_3d_conversion folder contains a file called “Drugs-Smiles” which
consists of nearly 1500 SMILES strings corresponding to a large fraction of the unique small-molecule ingredients
from the FDA substance registration system. Compared with other sources for such data, we have found these SMILES
strings to be relatively accurate.

Using a single computing core, for the smaller drugs, 3D structure generation takes tenths of a second (e.g.
dopamine). For medium-sized drugs, the timing is close to one second (e.g. tolterodine or sildenafil). For the largest
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I-atropine morphine testosterone

Figure 2.2 Five of the structures resulting from the example smiles_list command.

of the drugs (e.g. vancomycin), the process can take longer, due to both the number of atoms and the complexity of
meeting all of the chirality and ring constraints. The procedure is multi-core capable, and times will be much faster
when using multiple computing cores. Also, the process of conformer elaboration, which nearly always follows 3D
structure generation, will tend to dominate the computational cost.

2.3.1 SDF to 3D Molecular Structures

The fgen3d command will process either SMILES input (specified with the filename suffix “.smi”’) or SD/SDF input
(specified by the suffixes “.sdf” or “.sd”). In the former case, behavior is exactly as with the smiles_1ist command
just described. In the latter case, the SD file is processed, but the 2D coordinates are used as a starting point for
structure generation. In many cases, this yields a low-energy and configurationally correct structure very quickly.
However, the process reverts to a de novo approach in cases where the first try fails. Formal charges specified within
the file will be used if the ~reprot option is indicated; otherwise, the molecule will be protonated using heuristics to
produce reasonable structures for physiological pH.

2.3.2 Chirality Specification

Both SMILES and SDF formats support explicit specification of tetrahedral chirality and the configurations of double
bonded atoms. The SMILES format is unambiguous, making use of parity indications. The SDF format is more
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complex, especially for tetrahedral centers. The configurations may be specified either using parity or using the
hash/wedge bond convention with the structure as drawn in 2D. Either or both types of indications may be present in
an SD file, and in cases where they disagree, it is the hash/wedge indication that dominates. For double bonds, the
only way to specify configuration is by how the molecule is drawn in 2D. In addition to that, it is possible to mark a
double bond as having unspecified chirality when both isomers are intended. Depending on the sketching program,
unexpected differences may exist between the drawn molecule and the exported SDF file.

When producing 3D structures from SMILES or SD input, Surflex-Tools produces mol2 formatted output with
special properties fields that record the configurations of the specified chiral centers and double bond configurations.
Only a single conforming isomer is produced by the 3D structure generation process, but additional isomers may be
enumerated subsequently. The configurational specifications are interpreted by the forcegen command according to
options selected by the user (see next Section).

2.3.3 Protonation Given a 3D Starting Point

The typical use case involves beginning from a 2D starting point, as above. However, there may be cases where a 3D
conformer is provided whose protonation state is partial. Adding protons in such cases is often a tricky proposition,
because file formats such as SYBYL mol2 do not generally specify formal charges, so hybridization states must often
be inferred from geometries (similarly for SDF files produced by many procedures, e.g. those used by the RCSB
PDB). A protonation procedure is provided for such cases.

Use of the protonation procedure is as follows:

Directory: examples/tools/conformer_generation/cdk2

sf-tools.exe -fp -misc_remin prot pdblig-2xnb.sdf v1-2xnb
sf-tools.exe -reprot -misc_remin prot pdblig-2xnb.sdf v2-2xnb
sf-tools.exe -reprot prot pdblig-2xnb.sdf v3-2xnb
sf-tools.exe prot pdblig-2xnb.sdf v4-2xnb # DEFAULT

7 > sf-tools.exe prot cdk2-mols-noprot.mol2 prot-cdk2

# KEY OUTPUT FILES:
v[1-4] . mol2 Protonation variations for the ligand of 2XNB.
# prot-cdk2.mol2 All 80 CDK2 molecules, now protonated.

H*

Note that ligand preparation using the forcegen command, as described below, must be performed after protonation
of the ligands. Protonation occurs automatically using the smiles, smiles_list, or fgen3d commands but may be
explicitly required when beginning from 3D ligand structures.

By default, when using the prot command, it is assumed that the 3D structure input is fully specified in terms of
chiral configuration by the conformation that is given. So, the procedure will explicitly mark the given configurations
as being specified so that a subsequent forcegen command will not enumerate nominally unspecified centers. This
behavior is modulated by the (+-)mark_chiral flag (default is +). Also in the default mode of operation, full
heuristic protonation will be carried out (see Figure 2.3). Selecting neutral protonation or turning off minimization
can be accomplished as well by using the by -fp and -misc_remin command-line options.

2.3.4 Constrained Minimization and SF Charges

If ligands have been obtained from other workflows, it may be desirable to perform a constrained minimization in order
to compared the geometry that Surflex obtains relative to the pre-existing conformations. Also, when employing ligands
as the target of eSim similarity screening, it is important to calculate partial charges using the Surflex electronegativity
equalization methodology. The min command is similar in syntax to the prot command. It is used as follows:

# Directory: examples/tools/conformer_generation/cdk2
> sf-tools.exe -fp -misc_remin prot pdblig-2xnb.sdf v1-2xnb

> sf-tools.exe min vl-2xnb.mol2 1lig2xnb

5 > sf-tools.exe -pospen 100.0 min v1-2xnb.mol2 hardcon
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original -fp -misc_remin

-reprot -misc_remin -reprot <default> prot

Figure 2.3  Four examples of variations of protonation of a CDK?2 inhibitor. By default (lower right), full heuristic protonation
and constrained minimization is performed. Protonation toward neutral formal charge can be specified by -reprot, and constrained
minimization may be turned off by -misc_remin. By default, all pre-existing protons are removed and then protons are added.
Existing protons can be preserved by specifying the -fp flag. This can be useful if the particular atom ordering and numbering is
relevant to analysis.

7 # KEY OUTPUT FILES:

# lig2xnb-sfcharge.mol2 Identical conformers as input, with partial charge calculated
# lig2xnb-min.mol2 Charged and minimized conformers self-constrained

# hardcon-min.mol2 Charged and minimized conformers tightly self-constrained

# *-log Log files providing information about minimization process

If the user desires no constraint on the minimization, the —-pospen argument should be specified as 0.0.

2.4 LIGAND PREPARATION: CONFORMER ENSEMBLES

The BioPharmics Platform shares a common aspect for all ligand calculations: ligand conformational exploration
using the ForceGen method implemented within Surflex-Tools. There are four primary reasons for establishing this
step: 1) to ensure that molecules to be processed by the Dock/Sim/QuanSA modules can be correctly handled by the
MMFF94sf forcefield; 2) to establish baseline energetic expectations for each molecule against which strain estimates
can be made; 3) to centralize ring/conformation search in a single fast and easy-to-use place; and 4) to facilitate use
of the extremely fast similarity-based optimizations available within the Surflex-Sim and Surflex-QuanSA modules,
which require conformational elaboration prior to the respective procedures. This feature also includes extensive
control over the interpretation of chirality within molecules, with support for enumerating unspecified chiral centers
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as well as indicating whether specific molecules are pure racemic mixtures when containing more than a single chiral
atom.

The speed and accuracy of the ForceGen approach has been documented in two published papers, each with
extensive comparisons to other methods using public benchmarks [1, 2]. Both on “normal” small molecules and on
complex macrocycles, ForceGen is both faster and more accurate than alternative methods such as OMEGA from
OpenEye Scientific Software and ConfGen/MacroModel/PrimeMCS from Schrodinger Inc.

Control of the forcegen procedure is done using parameter selection schemes: —pgeom/f for prediction of geo-
metric molecular configurations (the overall default is ~-pgeomf if no other option is specified), -pscreen/-pfast/f
for rapid virtual screening of molecules (the recommended mode is -pscreen), and —pquant/f for affinity predic-
tion within QuanSA or for especially high accuracy pose prediction (for non-macrocycles the recommendation is
-pquantf, otherwise -pquant). Each of these basic schemes may be modified with respect to the maximal number of
output conformations, the energy window of allowable internal strain, and the number of ring conformational variants
to be generated and/or used.

The forcegen command is used as follows (using the output from the SMILES string processing discussed above):

# Directory: examples/tools/conformer_generation/forcegen_simple

3 > sf-tools.exe -pgeom forcegen example.mol2 pgmols

)
H OH o B H

v

sf-tools.exe extract_sfdb pgmols.sfdb ExampleMols/pg

Note tha tht ext_sfdb_sdf command is analogous to extract_sfdb

but it will create individual SDF files rather than mol2 files

The ext_sfdb_1sdf command will create a *single* SDF file with

the entire SFDB. Each molecule has tags for molecule ID, conformer
number , energy, etc.

H*

Look at the 3D examples
pym disp.pml

v

# KEY OUTPUT FILES:
# pgmols.sfdb (SFDB file containing all conf. ensembles)

7 # ExampleMols/pgeom-1list (List of pathnames to multi-conf molecule files)
# ExampleMols/pgeom-*.mol2 (Elaborated conformers)

The input archive of molecules is searched, with their conformations placed into multi-mol?2 files prefixed by the
specified string. So, a molecule with the name ‘“atropine” in the molecular file name as input will result in two
output files: (i) ExampleMols/pgeom-ring-atropine.mol2, the ring conformations that can serve as input to dynamic
pose elaboration in Surflex-Dock and Surflex-Sim, and (ii) ExampleMols/pgeom-atropine.mol2 which contains up to
250 conformers and is input, for example, in 3D similarity calculations. The parameter schemes control the overall
behavior of the forcegen procedure:

e -pfast/f: For rapid screening. Performs limited ring search, assuming that the provided conformer or
conformers are reasonable starting points. Identifies lowest energy ring conformers of the input ligand and uses
those from which to elaborate freely rotatable bonds (up to two ring variants are used for -pfast and just one
for -pfastf). Produces a maximum of 50 conformations per molecule. The overall energy window is 10.0
kcal/mol (same default for all modes). On typical drug-like compound databases, the -pfast approach requires
1-3 seconds per molecule, with the -pfastf approach typically requiring less than 1 second per molecule
median time and about 1.5 seconds per molecule mean time;

e -pscreen: Very similar to -pfast except that conformer pools are limited to either 50 or 120 depending on
molecular flexibility. For more flexible molecules, slightly deeper ring search is allowed. This mode is nearly
as fast as -pfast on drug-like small molecule databases but produces better ensembles for more complex
molecules. Essentially, it is a hybrid mode between -pfast and -pgeonf.

e -pgeom/f: Maximum ensemble size is 250. Deeper ring search is done in this mode. For -pgeonf, this allows
for 4 ring variants and for —-pgeom 10 such variants. In the -pgeomf mode, macrocycles are not searched by



LIGAND PREPARATION: CONFORMER ENSEMBLES 15

default but can be minimally searched by specifying +macrocyc. In the -pgeom mode, deeper ring search
is performed, both on macrocycles and non-macrocycles. The -pgeomf +macrocyc mode produces better
macrocyclic conformational ensembles than many other methods in a few minutes per molecule. The -pgeom
mode produces better macrocycle results than all but the most exhaustive alternative methods, typically in roughly
10 minutes per molecule. The -pgeomf mode typically takes 2—8 seconds per molecule (non-macrocycles), and
it is well-suited to pose prediction with docking or ligand-based methods.

e -pquant/f: Yetdeeper ring search compared with -pgeom/f and up to 1000 conformers are produced for each
ligand. For detailed work with macrocycles, the —~pquant mode is recommended. It produces substantially
better conformational ensembles than the -pgeom mode at a computational cost of about a factor of 3. The
-pquant mode can be time-consuming, and for non-macrocycles, the -pquantf mode is recommended (e.g.
for QuanSA).

e Recommended options:

-nfinal: Can be used to decrease the total number of conformers generated. The maximum number of
conformers is controlled by the overall parameter scheme (e.g. —-pquant = 1000). This can be used to
compress the results of deeper search protocols (e.g. -nfinal 100 -pquant).

-nconfs: To increase the ensemble size of faster/shallower search protocols, the —-nconfs parameter can
be used (e.g. -nconfs 100 -pfast). However, increasing the ensemble size for a fast search protocol
will produce poorer results than decreasing the size for a more thorough down to the same maximal
size. If one wants high-quality (but smaller) conformer pools, -nfinal 100 -pquant [or -pgeom] is
recommended over -nconfs 100 -pfastf.

-enthresh: Modifies the size of the energy window, which affects both the search strategy and the final
default energy window. The default value is 10.0 kcal/mol, but macrocyclic ligands will include double
the —enthresh value (so, a default of 20.0 kcal/mol).

-en_final: Modifies the final energy window above the discovered nominal global minumum, which
is controlled by the -enthresh parameter. For example, searching a macrocycle with the -pquant
parameter scheme can be modified to decrease the final energy window by specifying —en_final 7.0
-pquant.

Figure 2.4 shows the effect of ligand preparation using the -pgeom protocol on four challenging ring systems. The
ring-search method does not use templates nor distance geometry, rather making use of combinations of “ring-bends”
applied to each ring system, in a direct analogy to the forces acting on molecules at physiological temperatures in
condensed phase. Atropine contains a seven-membered ring system bridged by a tertiary amine with an exocyclic
substituent. The Surflex-Tools approach automatically identified the protonated nitrogen as being anomeric and
produced alternate orientations for the methyl and proton substituents, which can be very important, especially in
considering the relative alignments of such ligands. More subtle is that the carbon with the exocyclic substituent is not
topologically chiral (the ring system itself is symmetric), but the specification indicates that the methoxy is “down”
relative to the bridging functionality, so only one form is produced.

A lot of creativity is displayed in the construction of different ring systems, both by chemists and in nature. A good
example is the seven-membered cyclic urea that forms the core of a series of relatively rigid HIV-protease inhibitors.
The lowest-energy conformation (pink carbons) is relatively flat, but the system can bend forward and backward
without excessive strain. The two cases of testosterone and tetracycline, both natural products with four fused rings,
show an interesting contrast. The particular staggered fusion geometry for the six-membered rings in testosterone
coupled with a five-membered ring leads to a fairly rigid structure with only limited ability to flex up or down from
the lowest-energy state. In contrast, the linear fusion of four six-membered rings in tetracycline yields very significant
flexibility.
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atr core dmp core

Figure 2.4  Four examples of ring elaboration in the forcegen output pgeom-ring-*.mol2 files: the atropine core, the seven-
membered cyclic urea ring system (dmp core) of a potent HIV-protease inhibitor, the relatively rigid steroid core of four fused rings
in testosterone, and the significantly flexible four-ring system of tetracycline. The lowest energy conformer for each is highlighted
in cyan. For the dmp core, the lowest energy conformer is rotated 90 degrees to show that the ring conformation is correct.

2.4.1 Chirality Enumeration

Enumeration of unspecified chiral centers or proper accommodation of racemic compounds is controlled by several
user settable options to the ForceGen protocol. The —enum_chiral option (default 0) specifies the maximum number
of unspecified chiral centers to enumerate during ligand preparation. Note that in many cases, certain chirality
combinations result in either impossible or extremely high energy conformations. Consequently, chiral enumeration
treats the variants as conformational alternatives, essentially as part of the conformational elaboration process, subject
to both redundancy and energetic pruning. Chiral enumeration includes enumeration of unspecified tetrahedral centers
as well as unspecified double bonds.

Note that if a user has specified that a large number of chiral centers are to be enumerated, then the total number
of possible isomeric alternatives can become very large (e.g. 1024 possibilities for 10 chiral centers). The maximum
number of isomers is capped by the -max_enum parameter (default 8). Generally, if a large number of centers are
unspecified, it is quite likely that a data entry mistake has been made (a common example is not specifying the chiral
configurations within steroid scaffolds). Absent a data entry mistake, the mixture of isomers is sufficiently complex
that one should not rely on an enumeration scheme to reliably identify what the active isomer(s) may be.

Racemic mixtures are treated as a special case because the configurational energy of enantiomers is identical. So,
rather than producing enantiomeric variants prior to conformational elaboration, the conformational elaboration is
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done first. Then, the collection of final conformers is reflected through a plane such that exactly double the number
of conformers are produced than otherwise. For racemic mixtures, there are two cases. For a molecule with a single
tetrahedral chiral center, where that center is unspecified, and where no unspecified double bonds exist, that molecule
will be automatically detected as being racemic. In that case, if ~enum_chiral is greater than zero, the molecule will
be racemized (otherwise not).

The second case deals with a molecule with multiple chiral centers that the user wishes to treat as being racemic.
Neither SMILES nor SDF formats offer a means to indicate that the molecule may be racemic. In such cases, the user
must provide additional information.

The +racemize option indicates that all molecules with any tetrahedral chiral centers to be processed by the current
invocation of forcegen are to be treated as racemic. In this case, each molecule is checked to see whether or not it
has any chiral centers. If it does, then no matter how many it has and no matter how many are specified, the particular
3D configuration for a ligand that is input will be treated as the specified isomeric configuration and the racemic
conformational ensemble will be produced. This option can be useful if a particular series of molecules are racemic
and their 2D representations have correctly specified one of the two enantiomers correctly. The -racemic_list
option is very similar. The argument to the option is a pathname to a file containing a list of molecule names, one per
line. If any molecule being processed by forcegen is on the list, and it has at least one chiral center, then it will be
treated as with the +racemize option.

There is one other way in which a molecule will be treated as racemic, and this is specific to the SMILES format
when a 3D structure is produced by the smiles, smiles_list, or fgen3d commands. The following string is a di-
substituted cyclohexane with both chiral centers specified: C1[C@H](C)C[C@ @H](CC)C=C1. The two substituents
point in opposite directions on the ring. Being fully specified, it would be treated as a single isomer, but it could be
racemized in forcegen by +racemize or by specifying its name in the list that is the argument to -racemize_list.

The alternative is to specify both enantiomers as a single SMILES string with the “.” concatenation character
separating them: C1[C@H](C)C[C@ @H](CC)C=C1.C1[C@ @H](C)C[C@H](CC)C=Cl1. In this case, the molecule
will be marked as being racemic automatically by the 3D structure generation commands, and it will be enumerated
as such if —enum_chiral is greater than zero. This method will only work if the SMILES string contains two
isomers, each with fully specified chirality, written in the same atom order, and which have exactly the opposite chiral
specifications for all tetrahedral centers.

2.5 MACROCYCLES AND NMR CONSTRAINTS

Macrocycles are an important focus of the ForceGen method, and they offer a use-case where multi-core hardware
offers significant real-world speedups for interactive modeling. Detailed performance studies have been published,
establishing ForceGen (as of mid-2019) as the fastest and most accurate method for generating conformer ensembles
of macrocyclic compounds [1-4]. Examples of macrocycle exploration are given in the macrocycles sub-directory
of the conformer generation examples. The following shows how to search a macrocycle and assess performance of
the method when one has a crystal structure for reference.

# Directory: examples/tools/conformer_generation/macrocycles

We can test conformer search by randomizing a molecule, then
performing conformational search using the randomized starting
point, and finally comparing the results with the bound
configuration, as follows:

H* H H ®

§ > sf-tools.exe randomize_archive vanip.mol2 vanip

> sf-tools.exe -pgeom forcegen vanip-random.mol2 pgvan

10 > sf-tools.exe rms_conflist pgvan.sfdb vanip.mol2 test-van

# Or, we can employ the testprep procedure, which combines these
# tasks and also provides useful timing information.
> sf-tools.exe -pgeom testprep vanip.mol2 test-van2

# KEY OUTPUT FILES:
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# test-van-log Table reporting conformer pool quality
# test-van2-log Detailed table reporting conformer pool quality,
# test-van2-*mol2 Specific conformers aligned to the reference mol

The information in the table test-van2-1log is as follows:

LigandName: name of the tested ligand

NAtoms: number of non-hydrogen atoms

NRot: number of rotatable bonds outside of ring systems

CMin: energy of constrained minimized version of the randomized input ligand

Min: energy of fully minimized version of the randomized input ligand

MRSize: size of the largest macrocyclic ring (shortest ring path)

MacSys: number of atoms within the largest macrocyclic ring system including fused non-macrocyclic rings
NMacroF': number of rotatable bonds within the macrocyclic ring

A e BN i e

NConf: number of conformers in final ensemble

_.
e

BestRMS: best non-hydrogen atom RMS deviation (symmetry corrected) among the members of the ensemble
compared to the reference

11. Time3D: wall-clock time in seconds to re-generate the 3D version of the molecule

12. Time: wall-clock time in seconds to perform conformational search

13. BMin: energy of the best matching conformer to the reference

14. GMin: energy of the conformer with the minimum energy

15. R_RMS: RMSD of the ring atoms (as opposed to the BestRMS value which is for all heavy atoms)

16. I_RMS: Initial RMSD of the randomized starting point from the reference

17. R_RMS: Initial ring RMSD of the randomized starting point from the reference

The following runs a test of the ForceGen search on nine macrocyclic examples:

Directory: examples/tools/conformer_generation/macrocycles
sf-tools.exe -pgeom testprep ForceGenMacroSmall.mol2 testsmall
KEY OUTPUT FILES:
testsmall-log Table reporting conformer pool quality
testsmall-log Detailed table reporting conformer pool quality,
testsmall -*mol2 Specific conformers aligned to the reference mol
# testsmall-log: File Contents (omitting the last five columns)
# LigandName NAtoms NRot CMin Min MRSize MacSys NMacroF NCnf BestRMS Time3D Time
# 4YLA-ILV 22 3 76.62 76.44 9 15 6 240 0.28 0.27 7.20
# 4YZL-ILV 22 3 77.46 76.32 9 15 6 240 0.30 0.24 6.97
# 1XA5-KAR 59 9 213.77 211.39 9 19 6 246 0.52 2.80 64.92
# 4FFG-0U8 22 8 91.76 90.03 10 14 6 229 0.19 0.19 5.62
# 3EKS-CY9 37 6 103.24 101.21 11 18 8 237 0.23 1.57 26.07
# 5J2T-VLB 59 12 238.81 236.78 9 19 6 245 0.89 5.25 72.83
# 2HFK-E4H1 21 2 46.18 44.72 12 12 11 250 0.33 0.26 11.12
# 4B7S-QLE 28 6 64.18 61.93 12 12 11 239 0.49 0.58 25.10
# 4B7D-QLE 28 6 59.33 58.69 12 12 11 239 0.62 0.51 25.28

# To look at the superimpositions of the best generated conformers with
# the reference conformers
> pymol testsmall-orig-centered.mol2 testsmall-best-centered.mol2

Typical timings for cases where the total number of rotatable bonds (both inside and outside of a macrocycle) are a
minute or less on a 36-core workstation. Further details about macrocycle performance and comparisons with other
methods can be found in the 2019 ForceGen paper [2].

NMR Constraints: For large macrocycles (e.g. cyclic peptide compounds of with nine or more residues within
a ring), ForceGen is able to effectively identify low-energy, biologically relevant conformers, particularly when
hydrogen-bonding networks can be detected. However, the use of even sparse NMR constraints can both speed up the
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search process and improve the sampling of biologically relevant conformational space. The following illustrates the
use of ForceGen on Aureobasidin with NMR information: The following runs a test of the ForceGen search on nine

macrocyclic examples:

# Directory: examples/tools/conformer_generation/macrocycles

3 # The trans-Aureobasidin example, with and without NMR constraints

29

> sf-tools.exe +findbeta -pgeom -molconstraint nmr-constraint-bounds forcegen
aba_reference.mol2 testaba-bound-pg

> sf-tools.exe +findbeta -pgeom -molconstraint nmr-constraint-distances forcegen
aba_reference.mol2 testaba-dist-pg

> sf-tools.exe +findbeta -pgeom -molconstraint trans-constraint forcegen aba_reference.mol2

testaba-nonmr -pg

> sf-tools.exe +findbeta -pgeom -molconstraint nmr-constraint-bounds forcegen
aba_reference.mol2 testaba-bound-pg

> sf-tools.exe +findbeta -pgeom -molconstraint nmr-constraint-distances forcegen
aba_reference.mol2 testaba-dist-pg

> sf-tools.exe +findbeta -pgeom -molconstraint trans-constraint forcegen aba_reference.mol2

testaba-nonmr -pg

# Calculation of an NMR profile for the ensembles using the NMR constraints expressed as

bounds
> sf-tools.exe -molconstraint nmr-constraint-bounds profile testaba-bound-pg.sfdb
aba_reference.mol2 profnmrbound

3 > sf-tools.exe -molconstraint nmr-constraint-bounds profile testaba-dist-pg.sfdb

aba_reference.mol2 profnmrdist
> sf-tools.exe -molconstraint nmr-constraint-bounds profile testaba-nonmr-pg.sfdb
aba_reference.mol2 profnonmr

# KEY OUTPUT FILES:

# testaba-log Detailed table reporting conformer pool quality
# testaba-nonmr-log

# testaba-*mol2 Specific conformers aligned to the reference mol
# testaba-nonmr -*mol2

# nmr-constraint-bounds: File Contents

# Type force 1b ub al a2

nmr_bound 1.0 0.5 4.24 39 134 # 3 PHE H 8 LEU H 4.24 #pk
nmr_bound 1.0 0.5 3.87 39 96 # 3 PHE H 6 ILE H 3.87 #pk
nmr_bound 1.0 0.5 4.07 39 120 # 3 PHE H 7 NMV HA 4.07 #pk
nmr_bound 1.0 0.5 2.50 25 39 # 2 NMV HA 3 PHE H 2.50 #pk
nmr _bound 1.0 0.5 4.24 88 96 # 5 PRO HG2 6 ILE H 4.24 #pk
nmr _bound 1.0 0.5 4.24 89 96 # 5 PRO HG3 6 ILE H 4.24 #pk
nmr_bound 1.0 0.5 3.32 25 120 # 2 NMV HA 7 NMV HA 3.32 #pk
nmr_bound 1.0 0.5 4.24 27 39 # 2 NMV HB 3 PHE H 4.24 #pk
nmr_bound 1.0 0.5 2.70 98 101 # 6 ILE HA 6 ILE QG1 2.70 #pk
#

# Type force 1b ub nal na2 al... a2...

qnmr _bound 1.0 0.5 2.86 1 3 96 105 106 107 #pk
qnmr _bound 1.0 0.5 2.78 1 98 105 106 107 #pk
qnmr _bound 1.0 0.5 3.96 2 1 88 89 98 #pk
qnmr _bound 1.0 0.5 3.24 2 1 91 92 96 #pk
qnmr _bound 1.0 0.5 3.88 2 1 102 103 134 #pk
#

# Type force 1b ub al a2 a3 a4

torsion 0.3 -150 -90 36 38 40 56

torsion 0.3 -160 -80 93 95 97 112

torsion 0.3 -160 -80 131 133 135 150

torsion 0.3 160 200 82 81 79 63

The information in the NMR constraints file is as follows:

1. Comment: Any line whose first character is “#”
2. Type: the type of bound: nmr_bound, qnmr_bound, or torsion

50
119
120
44
38
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Figure 2.5 The result of NMR-constrained -pgeom search using bounds-style constraints on Aureobasidin. The CSD structure
is shown in green, the best matching structure in cyan (0.7A RMSD), and the full ensemble in magenta.

Force: force (kcal/mol/A? for distance constraints and kcal/mol/degree? for torsional constraints

Ib: the lower bound for the constraint (Angstroms or degrees), beyond which a quadratic penalty will be applied
ub: the upper bound for the constraint (Angstroms or degrees), beyond which a quadratic penalty will be applied
al: atom 1 (1-based numbering) for the first atom of a distance or torsional constraint

a2: atom 2 (1-based numbering) for the second atom of a distance or torsional constraint

a3: atom 3 (1-based numbering) for the third of a torsional constraint

O XNk Ww

a4: atom 4 (1-based numbering) for the fourth of a torsional constraint

10. nal: number of atoms in an unresolvable group of a distance constraint (1-6 atoms)
11. na2: number of atoms in an unresolvable group of a distance constraint (1-6 atoms)
12. al...: the list of exactly nal atoms

13. a2...: the list of exactly na2 atoms

The example provided of Aureobasidin was discussed very extensively in the 2019 ForceGen paper [2]. Here, we
cover the syntactic aspects of constraint application and profiling.

The NMR constraints file provides a flexible means to impose either distance or torsional constraints on molecules
for which data are available. Constraints can be expressed as lower and upper bounds (as above), between which no
penalty is incurred, and outside of which a quadratic penalty is providing in the energy calculated for the conformer
configuration in question. Note that with very small lower bounds for distances (as in the above example), there is
effectively only a single-sided upper bound because protons within a molecule cannot be so close together without
incurring very large interpenetration penalties. Similarly, a large upper bound may be used along with a sensible
lower bound to indicate that a pair of atoms must be at least some distance apart. Constraints can also be expressed as
preferred distances with an allowable “wiggle” (see nmr-constraint-distances), depending on how one chooses
to interpret the NMR data. In the case of distance-style constraints, the “_bound” string above is omitted, and the
lower and upper bounds are instead specified as a preferred distance and wiggle, respectively.

The prof ile command produces multiple measurements of the quality and diversity of a conformer pool, measured
against a set of NMR constraints. The information in the NMR profiling output is contained in two files. The first
addresses conformers (e.g. profnmrbound-confreport.txt), as follows (on a per-conformer basis):

Cnum: The number of the conformer in the output sfdb (sorted from low E+EViol energy)

RMS _MeanConf: RMS deviation from the “average” conformer (see profnmrbound-meanconf .mol2)
RMS_Pool_Min: RMS deviation from the closest conformer within the pool

RMS_Pool_mean: Average RMS deviation from all other conformers in the pool

Energy: MMFF94sf energy

E+EViol: MMFF94sf energy plus constraint violation energies

A e
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7. EViol: Total constraint violation energy
8. NDViol: Number of distance constraint violations: a violation exists if the constrained atomic distance is 0.25
Angstroms or more outside of the given lower/upper bounds or the preferred distance + wiggle
9. NTViol: Number of torsional constraint violations: a violation exists if the constrained torsion is 10 degrees or
more outside of the given lower/upper bounds
10. G_RMS: Minimum RMSD from any of the given “gold” reference conformers
11. G_Ring_RMS: Minimum macrocyclic ring RMSD from any of the given “gold” reference conformers

The second addresses the individual NMR constraints, as follows:

. Cnum: Constraint number

. NViol: Number of violations within the conformer ensemble

. MeanViol: The average magnitude of violations, when they occur

. Mean: The average value of the constrained distance or torsion within the ensemble

N B~ W =

. Constraint: The text of the constraint specified in the file
In addition, the following molecular file output is produced:

1. prefix-gold.mol2: The best matching “correct” conformation for each conformer of the ensemble
2. prefix-match.mol2: The generated conformer aligned to its best matching reference conformation
3. prefix-meanconf.mol2: The “average” conformer from the ensemble

Consideration of the constraint report can help identify wrongly assigned peaks from the NMR data, for example, if a
particular constraint is nearly always violated. In such cases, iteration without the offending constraint is recommended.
Figure 2.5 shows the superimposition of all conformers produced using the bound-based NMR constraints above on
top of the CSD structure of Aureobasidin.

2.5.1 Deeper Search: fgen_deep

For particularly complex macrocycles or situations where NMR restraints may produce a frustrated energy surface,
the fgen_deep command offers an iterative approach to conformational search. It produces larger conformational
ensembles than normal ForceGen search, with an unbounded possible number of conformers. It repeats a normal
ForceGen search on new starting points, which are the result of conformational clustering (in macrocycles, the clusters
are driven by ring variations). Several parameters control the depth and breadth of the search, clustering coarseness,
final conformer pool energy window, final RMSD redundancy, and an upper bound on time. It is illustrated on the
lariat peptide that was part of joint work with the Lokey Laboratory (UCSC), published in JACS [5], as follows.

# Directory: examples/tools/conformer_generation/fgen_deep

# Run the fgen_deep procedure using the final restraints from the JACS paper

+ # Then profile against the published conformer

sf-tools.exe -molconstraint nmr-bounds -pquant
fgen_deep lariat-random.mol2 lariat-deep
sf-tools.exe -molconstraint nmr-bounds
profile lariat-deep-final.sfdb JACS_Conformer.mol2 profdeep

# Run the fgen_deep procedure using the dihedral angle restraint to automatically determine
# the sign of the angle

> sf-tools.exe -molconstraint nmr-bounds-dihedral -pquant

fgen_deep lariat-random.mol2 lariat-deepdih
sf-tools.exe -molconstraint nmr-bounds-dihedral
profile lariat-deepdih-final.sfdb JACS_Conformer .mol2 profdeepdih

# Run the fgen_deep procedure using dihedral angle restraints to automatically
# determine sign AND ALSO determine between pairs of alternate angles that
# typically result from NMR coupling constants
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Figure 2.6 Lariat peptide [5] using fgen_deep with full disambiguation of dihedral angles from NMR data. The final deep
conformer pool contains the same motif (see H-bond pattern above) as in the original paper, but the workflow did not require
human-guided heuristic assignment of dihedral angle choice and angle signs.

# Excerpt from the nmr-bounds-dihedral2 file:
# Dihedral constraints follow (FINAL revision, but with full degeneracy)

# Type force Anglel Angle2 Wiggle al a2 a3 ad
dihedral2 0.01 94 146 10 2 45 51 52
dihedral2 0.01 91 149 10 10 4 3 2
dihedral2 0.01 50 82 10 52 53 55 56
dihedral2 0.01 101 139 10 18 12 11 10
s dihedral2 0.01 88 152 10 32 26 25 24

# Here we are also specifying tighter ring clusters, a smaller final energy window,
# and less redundancy in the final conformer pool
sf-tools.exe -deep_divrms 0.25 -en_window 5.0 -deep_clrms 0.5
-molconstraint nmr-bounds-dihedral2 -pquant
fgen_deep lariat-random.mol2 lariat-deepdih2
sf-tools.exe -molconstraint nmr-bounds-dihedral2
profile lariat-deepdih2-final.sfdb JACS_Conformer .mol2 profdeepdih2

# KEY OUTPUT FILES (last variation):

# lariat -deepdih2-final.sfdb Final low-energy conformer pool

# lariat -deepdih2-final-cluster*.mol2 Distinct clusters of conformers

# lariat -deepdih2-final-parent*.mol2 Parent conformer for each distinct cluster
# profdeepdih2* Profile data (see above)

NMR data regarding torsional angles is derived from coupling constants, which often results in fwo possible dihedral
angles in the range 0-180 degrees. The coupling constant is related to the angle berween the atoms in question and
cannot generally be automatically assigned a sign in order to fully specify and angle from -180-180 degrees.

Figure 2.6 shows the resulting lowest energy cluster (right) from the final variation of fgen_deep conformational
search. The cluster is of the same energy as that reported in the original paper, with the same optimal macrocyclic
ring geometry, but the procedure was fully automatic in terms of disambiguation of dihedral angle choices and signs
of the angles. Note that the resulting cluster contains 169 individual conformers, all within 5 kcal/mol of the global
minimum, redundancy filtered such that no pair of conformers is within 0.25A RMSD from one another. It is strongly
recommended that users characterize NMR-restrained conformer search results as ensembles, rather than picking a
“favorite” solution (i.e. the right-hand depiction in Figure 2.6 rather than the left).
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2.6 CONSTRAINING MOLECULAR CONFORMATION AND ALIGNMENT

In addition to specifying constraints on particular aspects of conformation through specific distance and torsional
constraints, in some cases a user has knowledge about the likely conformation of a substructure within a molecule
(e.g. from detailed energetic calculations) or about a molecule’s likely bound configuration.

In such cases, it may be desirable to make use of constraints on molecular pose within the Surflex-Dock, Surflex-
Sim, or Surflex-QuanSA modules. In order to do that most effectively, and to focus conformational exploration on
parts of the molecule that are unconstrained, the forcegen command’s behavior can be modified with the -torcon
specification. This specifies molecular subfragments which, when present in a subject molecule, will constrain the
matching portions. For the —torcon option, multiple fragments may be specified, and they will be applied in the order
provided, where matched atoms within the subject molecule will be constrained by the first match. So, if multiple
molecular fragments are provided that share substructures, the more specific one should be provided before the others.

The Tools module addresses torsional constraints, embedding the resulting constraints in the SFDB file that is
produced. Positional constraints are imposed within the Docking, Similarity, and QuanSA modules. In order to
provide a quick method to test the combination of torsional and positional constraints, the apply_poscon command
is provided within the Tools module as well.

From the CDK?2 example above, the ligand of 1H1S contains a substituted guanine that forms a common core among
a large series of CDK2 inhibitors [6]. Figure 2.7 illustrates the use of the conformation and alignment constraints in
ligand preparation, which are applied as follows:

# Directory: examples/tools/conformer_generation/cdk2

> sf-tools.exe -torcon cdk2-torcon.mol2 forcegen m66.mol2 pg-torcon

i > sf-tools.exe apply_poscon cdk2-poscon.mol2 pg-torcon.sfdb test

10

# KEY OUTPUT FILES:
# pg-torcon.sfdb Torsion-constrained conformer ensemble
# test-poscon.mol2 All confs with applied position constraint

# Look at the resulting search conformers

> pym disp.pml

In this example, two subfragments specify torsional constraints, with the second being a substructure of the first.
The first specified fragment forces any matching di-substituted guanine (i.e. with both the phenyl and the cyclohexyl
substituents) to follow the given conformation. The second fragment constrains molecules that lack the phenyl but
match the remainder. The alignment fragment ensures that all guanine ligands will be aligned based on the central
heterocycle. The degree of tightness of the torsional constraints is controlled by the following two parameters:

e —torpen: The penalty for deviating from the specified torsional pattern (kcal per squared-degree, default 0.1)
outside of the wiggle allowance.

o —twiggle: The allowance for free wiggling of torsional angles below which no penalty is incurred (default 5
degrees).

Note that the constraints are flat-bottomed quadratics, which allow for a good deal of user flexibility. It is seldom
advisable to use high penalties with zero wiggle-room, owing to the need to accommodate the effects of substituent
variation on both the conformation of the ligand as well as its preferred alignment within the system being studied.

Note also that hydrogen atoms are matched explicitly within the fragment graph search. For example, the presence
of hydrogen atoms on the cyclohexane substituent prevents matching to any substituted cyclohexane. Similarly, the
lack of hydrogen atoms on the phenyl allows the fragment to match substituted phenyls.

2.7 MOLECULAR FORCEFIELD: MMFF94S/X/SF

Versions of the BioPharmics Platform prior to 4.0 relied upon a DREIDING-type forcefield. Now, a fully implemented
MMFF94s forcefield is in place, with DREIDING only used in rare instances where parameters are not available within
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Torsional Constraints Positional Constraint

Figure 2.7  The torsional constraints ensure that ligands containing the two green substructures will match those conformations.
The alignment constraint ensures that the guanine core will guide the physical alignment of the molecules. The flexible molecule
(CDK?2 ligand m66) is explored only with respect to the unconstrained degrees of freedom, which include the left-hand side of the
molecule, extending into solvent in the CDK2 pocket. The apply_poscon command enforces the positional constraint shown in
cyan.

MMFF9%4. Note that the principle difference between MMFF94 and MMFF94s is in regards to the treatment of nitrogen
atoms and the degree to which they exhibit planar or near-planar geometry when they are attached, for example, to
aromatic systems. The Surflex approach is similar to that introduced by CCG in the MOE platform, where the terms
that force additional planarity are further stiffened (termed MMFF94x in MOE) to produce conformations that are
more congruent with expectations. There are slight differences in the atom typing between the Surflex MMFF94
variant and one that is nominally fully compliant. These differences typically occur in the treatment of nitrogen atoms
where there are multiple logical assignments for the atom types, generally in aromatic or conjugated systems that also
include a formally charged nitrogen. We term our MMFF variant “MMFF94sf” to distinguish it from others, but it
follows the MMFF94x variant closely.

By default, the dielectric is set at a constant value of 80.0, simulating molecular behavior in water. For ligand
preparation, this provides excellent sampling of conformational space without introducing artificially constrained
conformations that include strong Coulombic intramolecular interactions. Different treatments of the intramolecular
dielectric value are being explored for use during ligand pose optimization in Surflex-Dock, Surflex-Sim, and Surflex-
QuanSA. At present, we have found that using the default value produces consistent and favorable results across many
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Figure 2.8  ForceGen performance: cumulative histogram of RMSD to crystallographic bound pose under different search
protocols (left); wall-clock timings on a log scale (right).

different application scenarios. Note that the infer-molecular interactions between, for example, protein and ligand
atoms are governed by explicitly derived empirical scoring functions.
Though not recommended, the dielectric value can be changed using the -mmdielectric option.

2.8 CONFORMER ENSEMBLE QUALITY AND LIBRARY PREPARATION

Details regarding ForceGen benchmarking with respect to the likelihood that a conformer ensemble will contain
something close to the bioactive conformer can be found primarily in two papers [1, 2]. Figure 2.8 shows performance
for the v5.189 version compared with the results shown in the original benchmarking paper [2]. The Platinum Diverse
Benchmark is run as part of the regression testing of each new release (using the testprep procedure described
above), as follows:

# Directory: examples/tools/conformer_generation/platinum-diverse-benchmark/

sf-tools.exe -pfastf testprep PlatinumDiverse.mol2 platf

sf-tools.exe -pscreen testprep PlatinumDiverse.mol2 plats

sf-tools.exe -pgeom testprep PlatinumDiverse.mol2 platg

sf-tools.exe -pquant testprep PlatinumDiverse.mol2 platq
> grep -v Time platf-log | awk ’{print $10}’ > vals; sf-tools.exe hist vals hplatf
> grep -v Time plats-log | awk ’{print $10}’ > vals; sf-tools.exe hist vals hplats
> grep -v Time platg-log | awk ’{print $10}’ > vals; sf-tools.exe hist vals hplatg
> grep -v Time platq-log | awk ’{print $10}’ > vals; sf-tools.exe hist vals hplatq
# KEY OUTPUT FILES:
# plat*x-log Log files with statistics on time and quality
# hplat*-cdf Cumulative histograms of performance

In some cases, one may want to used a particular depth of search to guarantee adequate exploration of conformational
space but also control the maximum size of the output conformer pools. This can be done with the -nfinal parameter,
as follows:
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Figure 2.9  ForceGen performance: at left comparing standard -pquant performance (solid red) to -nfinal 200 -pquant
performance (dotted red); at right comparing standard -pgeom performance (solid cyan) to -nfinal 50 -pgeom performance
(dotted cyan).

# Directory: examples/tools/conformer_generation/platinum-diverse-benchmark/

3 # Use deep -pquant search but limit final conformer pools to 200. Also -pgeom -nfinal 50

> sf-tools.exe -nfinal 200 -pquant testprep PlatinumDiverse.mol2 platq200
> sf-tools.exe -nfinal 50 -pgeom testprep PlatinumDiverse.mol2 platg5O0

> grep -v Time platq200-log | awk ’{print $10}’ > vals; sf-tools.exe hist vals hplatq200
> grep -v Time platg5h0-log | awk ’{print $10}’ > vals; sf-tools.exe hist vals hplatgh0

# KEY OUTPUT FILES:
# plat*-log Log files with statistics on time and quality
hplat*-cdf Cumulative histograms of performance

H*

Figure 2.9 shows a comparison of the two pool-size-limited variations. At left, the standard up to 1000 conformer
—-pquant pool (solid red curve) is shown compared to the same search but limited with respect to pool size using
-nfinal 200 (dotted red curve). The limitation to a maximum 200 conformers per molecule reduces the accuracy
compared with the standard -pquant performance, but just by a few percentage points, essentially matching the
standard performance using the -pgeom setting, but doing so with a maximum pool size of 200 rather than 250 for the
standard —-pgeom setting.

Similarly, at right in Figure 2.9, the standard up to 250 conformer -pgeom pool (solid cyan curve) is shown compared
to the same search but limited with respect to pool size using -nfinal 50 (dotted cyan curve). The limitation to
a maximum 50 conformers per molecule reduces the accuracy compared with the standard -pgeom performance,
essentially matching the standard performance using the -pscreen setting. The standard -pscreen setting produces
pools with maximal sizes of 50 or 120 depending on the conformational flexibility of each molecule, but the -nfinal
50 -pgeom protocol produces pools with a maximal size of 50. This is the same maximal size as is produced by
default using the -pfastf setting, but the pools are of higher quality due to more thorough search prior to final
conformer ensemble compression.

For preparing large databases that will be persistently used (e.g. an in-house compound collection), making use
of a more thorough search setting (e.g. -pquant or —-pgeom) along with a limitation on final conformer ensemble
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size (using -nfinal) offers a way to increase conformer ensemble quality while reducing the size of the resulting
conformer databases. This approach also offers a means to make effective comparisons among methods, considering
all aspects of time efficiency, conformer pool size, and conformer pool accuracy.

2.9 MULTIPLE PROCESSOR LIGAND PREPARATION

When preparing large numbers of molecules, it may be wise to split the work across many processors. To achieve
optimal core utilization on an N-core processing node, running N parallel single-threaded jobs will achieve maximal
core utilization. It is possible to prepare a database of a few million molecules in a few days time on a 36-core linux
workstation. The easiest way to implement this is by using a script that combines 2D to 3D generation and conformer
search. An example script is provided, as follows:

# File contents: bin/util/RunFgen
#!/bin/bash
export OMP_THREAD_LIMIT=72

Argl = filename.sdf or filename.smi

Arg2 = outprefix

Arg3 = nproc (total number of jobs)

Arg4 = procnum (l-based indication of job number)
Argb = nthreads (number of threads per job)

{ time sf-tools.exe +reprot -nthreads $5 -multiproc $3 $4 fgen3d $1 $2_%4 >& /dev/null ; }
2> time_fg3d_$4

{ time sf-tools.exe -nthreads $5 -enum_chiral 1 -pscreen forcegen $2_%4.mol2 ps_$2_$4 >&
/dev/null ; } 2> time_fgen_%$4

# The following 36 commands should be run in parallel:

RunFgen LargeDB.sdf largedb 36 01
RunFgen LargeDB.sdf largedb 36 02
RunFgen LargeDB.sdf largedb 36 03
RunFgen LargeDB.sdf largedb 36 04

vV V V VvV
=R e e

RunFgen LargeDB.sdf largedb 36 33
RunFgen LargeDB.sdf largedb 36 34
RunFgen LargeDB.sdf largedb 36 35
RunFgen LargeDB.sdf largedb 36 36

vV V Vv Vv
e

v

cat ps_largedb_x*.sfdb > ps_largedb.sfdb

# KEY OUTPUT FILES:

# largedb_[01-36].mol2 (36 mol2 files with single 3D conformers,
# each containing 1/36 of the mols)

# ps_largedb_[01-36].sfdb (36 -pscreen level SFDB conformer files)
# ps_largedb.sfdb (A1l of the mols in a single SFDB)

Simple modifications to the script can be made to modify the level of conformer search, chirality enumeration, etc.
The SFDB file format is binary, but concatenation of the files on most operating systems will result in a well-formed
SFDB file. The SFDB format avoids overwhelming file systems with large numbers of files. Note, however, that file
systems can have a limit on the size of a single file, and it might be sensible to keep multiple smaller SFDB files in
cases of very large molecular databases. This can facilitate splitting large jobs across many nodes, as might be desired
for a large virtual screening exercise.

Note that the last line of the log files for fgen3d and forcegen will indicate successful completion of the respective
procedures. Occasionally, shared clusters will have time limits on jobs, and long jobs may be killed prior to completion.
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Very infrequently, we have observed crashes due to a missed corner-case usually relating to molecular file format
issues, and such cases of unexpected termination should be documented and reported as bugs.

2.10 MISCELLANEOUS SURFLEX-TOOLS COMMANDS AND ASSOCIATED OPTIONS

Supported commands not discussed in detail above are discussed briefly here.

The overall ligand preparation schemes have been described above. The default option -pgeomf will produce solid
results across most use-cases. However, where speed is particularly important, for preparing and screening large sets
of molecules, the -pscreen or -pfast/f options are preferred. For multiple alignment generation, high accuracy
pose prediction, or for any application within Surflex-QuanSA, the -pquant/f option is preferred (selection of the
faster mode may be sensible when macrocycles are not present).

The commands smiles, smiles_list, fgen3d, and forcegen, prot commands have been described above in
detail. The forcegen options can be used to modify the behavior of the default parameter schemes. The min command
offers constrained minimization of the input molecule, which can be useful to de-strain a crystallographic ligand pose.
The —-pospen parameter adjusts the constraint penalty, which should be greater than or equal to zero.

The options —-rms and -strict_rms control the redundancy level in conformer pools produced by the forcegen
command. The former does not correct for molecular symmetry but rather ensures diversity of sampling during the
elaboration process. Note that toward the end of conformer elaboration, if a pool has room (e.g. has less than 250
conformers in a —-pgeom protocol), then the pool will be “back-filled” with additional conformations that may be
closer together than the specified -rms. The strict_rms value controls the degree to which conformers will be
redundant with symmetry correction, and it is applied late in the ForceGen procedure. Note that a full set of pairwise
conformer alignments is not carried out in order to find the actual minimum pairwise symmetry-corrected RMSD
for each conformer pair in a pool. A more limited set of alignments is used in the interest of computational speed.
However, one should not see truly redundant conformers with —strict_rms set to a value greater than zero.

The options for molecular constraint ~torcon and -mmdielectric have been described above in detail. Note that
imposition of torsional constraints occurs only within the ForceGen protocol, with the constraints being embedded
within the resulting SFDB file. The penalty magnitude can be varied in subsequent calculations. Positional constraints
can be tested within the Tools module (using apply_poscon), but they may be imposed only during subsequent
alignment-driven calculations.

The reorder command will take an input mol2 archive and sort it according to flexibility from rigid to flexible,
randomly outputting a proportion (from O to 1) of the molecules to OutputArchive. This is useful for sampling and
running control sets of molecules or for ordering archives for fast run time on the majority of molecules.

The adjust_dielectric procedure is experimental. Given an SFDB for a single molecule, the pool will be
minimized and re-sorted using the end_diel value. The procedure is intended to help with careful study of membrane
permeability, especially for macrocycles. The recommended use is to employ the ForceGen procedure with the default
dielectric (80.0) and then to employ the adjust_diel command, specifying the start and end values (e.g. 80.0 for
water and 4.0 for a membrane-like lipid environment).

The regen3d command will randomize the pose of the input molecule and produce a single pose for each in
*-random.mol2. This removes all memory of the previous pose, but it retains chirality and protonation state. The
coordinates of the atoms are initially all set to 0.0 prior to regenerating the 3D molecular structure. The ran_archive
command is similar.

The rms command computes rmsd between moll and mol2, correcting for internal symmetries.

The get command will retrieve the molecule named molname from the mol2archive and put it into the specified
output molecule file name.

The mget command is analogous, but takes a list of names as input. The mgetnum command is similar, but takes a
list of numbers as input (the numbers are zero-based: the first mol of the mol2 is number “0”).

The subset_sfdb command is similar to mget and will retrieve the named molecules and create a new SFDB as a
subset of the original one.
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The info command provides information on the input molecule. It can be useful to understand how Surflex is

parsing a molecular structure.

The splitmols and mergemols commands operate on SYBYL mol2 archives, either splitting the archive into

individual molecule files or merging separate molecules within a single archive into a single molecule.
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CHAPTER 3

DOCKING MODULE TECHNICAL MANUAL

This chapter describes the use of the BioPharmics Platform Docking module (Surflex-Dock). The former combines
a refined descendant of the Hammerhead scoring function coupled with the alignment/conformation optimization
procedures implemented for morphological similarity [1—4]. The initial description of Surflex-Dock was published in
2003 [5], with many subsequent papers covering the detailed scientific and mathematical underpinnings, as well as
improvements such as customization of scoring functions, full Cartesian pose optimization, use of multiple protein
structures, protein pocket adaptation, and other aspects [6—15]. Examples referred to in what follows are included with
the BioPharmics Platform distribution. Performance comparisons can be found in the references mentioned above.

Preparation of protein structures and ligands is critical to produce sensible and reliable results. The most crucial
aspect for both is protonation, but issues of internal energetics can also be quite important. With respect to protonation,
all BioPharmics Platform programs expect molecules to be protonated as expected in the relevant physiological
condition, including non-polar hydrogen atoms. While there are utilities provided that aid in preparation (described
below in the context of docking), aspects such as tautomer generation and special protonation states for metal chelation
moieties are not currently addressed within the BioPharmics Platform platform and must be directly managed by the
user.

Preparation of ligands is done using the Tools module, and the use of the ForceGen conformational elaboration
method is now required [16, 17]. The Tools ligand preparation output file format is the SFDB (file extension: .sfdb).
It is a compressed molecular format that pre-packages many required aspects of molecular parsing (e.g. atom typing
and force field term generation) in order to make molecular input to downstream programs much faster. An important
change for the Docking module is that specification of torsional restraints is handled by the Tools module, while
positional constraints on molecular substructures remains within the Docking module.

The docking module provides protein-focused tools for obtaining and processing PDB files in bulk, with automated
procedures for inferring ligand connectivity and for optimizing protein and ligand proton interaction networks. These
tools are designed to be robust for use on large data sets. However, specific cases of keen interest, whether they be
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ligands with unusual protonation/tautomer states or proteins that are the subject of focused study, should be handled
with care and direct attention by the user.
Following preparation of proteins and ligands, there are three steps in performing docking:

1. Choosing how to identify the active site of the protein and constructing a docking target to which to match
molecules (called a protomol).

2. Docking one or many molecules.
3. Analyzing the results.

Each of the basic tasks is controlled by a series of user-settable parameters, but the built-in defaults are reasonably
robust to many different protein/ligand pairs. The user will generally specify either “-pgeom”, or “-pscreen” options
to select parameter set choices for geometric docking accuracy or for virtual screening.

3.1 SURFLEX-DOCK COMMAND LINE INTERFACE

Note that there may be minor variations between the figures shown in the manual and the precise results shown in
the software distribution. There are no statistically significant differences, but, for example, the N** ranked solution
indicated in the manual may correspond more closely to the (N-1)%¢ in the actual distribution. The variations are due
to small algorithmic changes across minor version increments as well as cross-platform and compiler differences.

This is the command-line help listing of Surflex-Dock:

I BioPharmics Platform Version 5.193
Usage: surflex-dock <options> <command> args

PROTOMOL PREPARATION COMMANDS:
5 mproto SitelList prefix (SiteList: <protein.mol2 ligand.mol2> on each line)
proto sitemol protein protomol
-proto_minvox (500) Minimum number of voxels for protomol building
-proto_corevox (100) Minimum number of voxels for core protomol building
9 -proto_thresh (%) Manual threshold for marking a voxel based on buriedness (default

adaptive)
-proto_bloat (0) Number of voxels to bloat protomol
1" -proto_dist (2.00) Distance to ligand for marking

[PARAMETER SELECTION CHOICES for DOCKING]

-pgeom Pose accuracy parameter set [DEFAULT]
15 -pscreen Screening parameter set

-pfast Screening parameter set, fastest search
1 -pquant High-accuracy pose prediction

19 DOCKING and SCORING COMMANDS: (NOTE: MUST prepare ligands using sf-tools/forcegen)

dock ligand protomol core-proto protein
dock_list liglist protomol core-proto protein log
gdock_list liglist targpath 1log
23 -ndock_final (x) Number of final docking poses (varies depending on parameter
scheme)
-lmatch fmol Turns on dynamic eSim-based alignment to given ligand poses
25 -maxrot (200) Max number of rotatable bonds on which to operate
-div_rms (0.25) RMS minimum difference of final poses
27 -multiproc npc pnum Indicates NPC processor run, current processor is PNUM
-min_output (--) Score below which to suppress output
29 posefam logfile
-rmsbin (1.50) RMSD threshold for binning pose families
-famdiff (0.05) Tanimoto thresh for pose family redundancy
-poseprob (0.001000) Individual pose probability threshold
-posehints liglist If provided, will use these poses to refine pose family scoring

opt ligand protein outprefix (single ligand local optimization of
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inter-molecular interactions)

MOLECULE SEARCH/ALIGNMENT CONSTRAINTS:

-poscon <frags> Molecular fragments (multi-mol2) to constrain position
-pospen (56.00) Penalty for deviating from specification (kcal per Angstrom~2)
-pwiggle (0.25) Amount of free wiggle with zero penalty (Angstroms)
-skipnonmatch Turn OFF skipping non-matches to -poscon arg (DEFAULT ON)

[-torcon must be applied using forcegen including penalty parameters]
-mmsweight (0.2) Ligand strain weight above global minimum
-mmwiggle (0.0) Free weighted strain in optimization protocols

PROTEIN PROCESSING COMMANDS

getpdb pdb_name_list outprefix
grindpdb protein.pdb outprefix
grindpdblist PDBList outprefix

-maxprotein
-maxligand
-verifypdb

(20000) Maximum number of ATOMs in PDB to process.
(100) Max atoms in peptidic ligands to be pulled from protein.
(/home/ajain/bin/verifypdb.smi) SMILES file with PDB ligand structures

and HET codes.

-pdbcharge
-pdbalt
-pdbopt
+pdbquick
+mul_model

Do not generate protein charges.

(A) Alt char to be included in protein
Do not optimize protons (default OPT).
No charging, small max ligand... (default not quick)

(+-) Process multiple models in PDB file.

and ligand.

charge_protein protein.mol2 outprefix

-psim_overlap

psim_matrix

-psim_keep

-psim_tree

-psim_dump
psim_maketree
psim_static
psim_one
psim_list
psim_two_list

psim_choose_k

psim_findcav

PROTEIN ALIGNMENT:
psim_align_all ProteinList outprefix

(e.g. PList trypsin)

(ProteinList: [protein.mol2 N ligl.mol2 ligN.mol2] on each line)
(0.50) Overlap threshold for ligands in final alignments.

ProteinlList outprefix

(ProteinList is [protein.mol2 ligand.mol2] on each line)

(0.60) Threshold to keep psim edges (psim_matrix and psim_align_all).

(0.65) Threshold to break psim trees (psim_matrix and psim_align_all).

(+-) Dump alignments in psim_list (if > -psim_tree param).

psim.datalog prefix

pl 11 p2 12 (Static psim computation with no alignment.)

pl 11 p2 12

ProteinlList p2 12 outprefix

ProteinListl ProteinList2 outprefix

(ProteinList is [protein.mol2 ligand.mol2] on each line)

cluster-prefix K outprefix (e.g. trypsin-cO 5 trypchoose)

(Use K-means clustering to choose K representative sites)

protein outprefix

-psim_cavthresh (0.60) Density thresh for cavities (lower --> larger + more).

rms_list
rms_fam
+sdf
dock_fp
bbox

MISC-PROCESSING COMMANDS and SPECIFIC ASSOCIATED OPTIONS:

multi_mol reference_mol <max_n> logfile

reference_mol logfile outprefix <max_fam>

produce tagged sdf output from docking commands (OFF)
protein.mol2 ligands.mol2 <distance> outprefix
inmolpath <bloat> <mindim> <cube_p> outprefix

Each block of commands and options has a section heading indicating usage. The top block of commands, for
example, relate to protomol preparation. The docking control options and the last block of commands share much in
common with the Similarity module.

All commands should be typed lower-case. The preferred input file format is Sybyl mol2 from proteins, and
ligands must be prepared using the Tools Module to yield SFDB files. Molecular output is generally in Sybyl mol2
format as well. MDL mol or sd file (for ligands) and PDB (for proteins) are also acceptable, although PDB files may
generate errors or unexpected results, since the format is frequently variable. All input molecules must be protonated
as expected at physiological pH including non-polar hydrogens. The protonation state may strongly affect docking.
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3.2 PRIMARY CHANGES IN CURRENT VERSION

General notes about the current version can be found in the Release Notes in the Foreword to this manual. Detailed
notes can be found here.

3.3 PROTEIN STRUCTURE PREPARATION

Preparing a clean, protonated, protein structure with its bound ligands and cofactors is well supported by a number
of modeling packages. For small numbers of proteins, or for those where very particular attention must be paid to
particular alternate conformations, rotamers, tautomers, protonation states, or other aspects, we recommend making
use of an interactive modeling scheme. However, for large numbers of protein structures from the PDB, large-scale
preparation, mutual alignment, and systematic selection of important and significant variants can be challenging. The
Docking module provides three key commands to automate this process: getpdb, pdbgrind, and pdbgrindlist (the
last being a multi-core parallel implementation). The module also provides for efficient cavity identification, surface-
based alignment optimization, and variant selection (see proto multicav, psim_align_all, and psim_choose_k
later in this chapter).

Within the examples provided with the distribution, an extensive case involving CDK2 is shown, based on our
large-scale cross-docking benchmark compilation [15]. In that work, for ten protein targets, we identified the earliest
25% of co-crystal structures known and made use of that knowledge in order to predict the bound configurations of the
ligands within the remaining future structures with an ensemble docking protocol. Here, we will see how the “early”
CDK?2 structures are processed (and aligned) automatically.

# Directory: examples/docking/protein
> # Contents of CDK2-Early:

Aligned CDK2 Alignment Tree

Structures o oot et sy
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Figure 3.1 Automatically retrieved, prepared, and aligned protein/ligand complexes.
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1AQ1
1CKP

> sf-dock.exe getpdb CDK2-Early cdk2

# KEY OUTPUT FILE:

# cdk2-script

# Contents of cdk2-script:

wget https://files.rcsb.../1AQ1l.pdbl.gz ; ... ; sf-dock.exe grindpdb 1AQ1l.pdb cdk2
wget https://files.rcsb.../1CKP.pdbl.gz ; ... ; sf-dock.exe grindpdb 1CKP.pdb cdk2

# Run the script to grind the proteins and make a summary list of protein
files with their ligands:
> source cdk2-script # Now this is parallel. A serial script is cdk2-script-serial

H*

> sf-dock.exe psim_align_all cdk2-plist cdk2_align ; rm *.grid
> dot -Tpdf -o cdk2-tree.pdf cdk2_align.AlignmentTree.dot

KEY OPTIONS (applies to psim_align_all and psim_maketree):
-psim_overlap Minimal degree of ligand overlap between binding
sites (default 0.50).
-psim_keep Minimal value of similarity from a binding site to

any other in order to preserve as a non-outlier
(default 0.60).

-psim_tree Minimal value of similarity for an edge in a tree
any other in order to avoid breakage into
separate trees (default 0.65).

H OH H O OH O H R

> sf-dock.exe psim_choose_k cdk2_align-cO 5 cdk2-choose

# KEY OUTPUT FILES:

# cdk2 -sum-* Summary for each structure with real ligands
# cdk2-pro-<pdbcode>.mol2 Protein structure

# cdk2-lig-<pdbcode>-<het>.mol2 Ligand structure

# cdk2-water -<pdbcode>.mol2 Water molecules

# cdk2_align-cO-*.mol2 Aligned proteins and transformed ligands

# cdk2-choose Identifies the cluster center proteins

# Look at the aligned structures:

> pym disp.pml

One of the most challenging aspects of this automated process is the correct perception of ligand structures,
particularly with respect to connectivity, bond order, and tautomeric state. The grindpdb command is successful
over 95% of the time in producing a protonated set of protein and ligand structures that are suitable for direct use by
Surflex-Dock. Cases where no interpretation can be made of ligand connectivity that are consistent with a low-energy
conformer result in the ligand being skipped. In cases where, for example, the interpretation of alternate ligand
conformations causes fatal connectivity problems, the entire complex is skipped. All structures for which at least one
ligand is produced result in a summary file (here, cdk2-sum-*). In cases where a PDB file yields a protein structure
with one or more ligands, the results are free from obvious defects over 98% of the time. The program automatically
associates metal ions with the protein.

It also eliminates common co-solvents and organic anions (e.g. DMSO, ethylene glycol, tartaric acid). The full
list of ignored common “ligands” is: 1PE (PEG400), ACN (Acetone), ACT (Acetate), AKG (2-Oxoglutaric acid),
BET (Trimethyl glycine), BME (Beta-mercaptoethanol), BTB (Bis-tris buffer), CIT (Citric acid), DMS (Dimethyl
sulfoxide), DTT (Dihydroxy-1,4-Dithiobutane), DTT (1,4-Dithiothreitol), EDO (Ethylene glycol), EPE (Hepes), FLC
(Citrate anion), GOL (Glycerol), HED (2-Hydroxyethyl disulfide), IPA (Isopropyl alcholol), MES (2-N-morpholino-
ethanesulfonic acid), NO3 (Nitrate ion), P6G (Hexaethylene glycol), PEG (Di-hydroxyethyl-ether), PG4 (Tetraethylene
glycol), PGE (Triethylene glycol), PO4 (Phosphate ion), POP (Pyrophosphate 2), SGM (Monothioglycerol), SO4
(Sulfate ion), TLA (L(+)-Tartaric acid), TMO (Trimethylamine oxide), and TRS (Tris buffer).
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Ligands of 5 optimal protein pocket variants of CDK2

1H1P-CMG 10GU-ST8 1HOV-UN4

Px \/\)1 fog® O
sy T Y

1KE6-LS2 1HO1-FAL

Figure 3.2 Examples of the ligand structures from those complexes chosen in the psim_choose_k procedure. Only polar protons
are shown, but note that all protons are required for use in the docking protocols described here.

The ligand structures are built heuristically, first based on bond length inference, then geometric considerations
(e.g. a planar six-membered carbon ring is probably a phenyl even if the bond lengths are too long), specific rules for
common perception challenges, and finally some limited tautomeric exploration. The protein and all bound ligands
are mutually optimized with respect to imidazole tautomers on the protein, tautomeric variants for the ligands, and for
the orientations of hydroxyls and thiols. Note also that for three common metal chelation moieties (e.g. hydroxamic
acids, sulfonamic acids, and thiolates), protons are removed as appropriate from the ligands when they are interacting
with a metal ion.

Only those ligands that pass multiple quality tests will be listed in the summary file. All ligands will be listed in log
files for each PDB structure processed. Within the software distribution binary folder, there is a file “verifypdb.smi”
which contains roughly 25,000 SMILES structures for PDB ligands and their corresponding HET codes. If this file is
present in the directory in which PDB structures are being processed, the inferred ligand structures will be checked
against the corresponding SMILES structure (including some tautomeric variants). Alternatively, the -verifypdb
argument can be used to specify a pathname to a SMILES file (each line having a SMILES string and a HET code).
This argument can be specified to getpdb or to individual grindpdb commands. If this verification option is selected,
all ligands must match a HET code in the given SMILES file and the ligand structures must match. If they do not
match, an attempt is made to “coerce” the ligand into the hybridization state that is specified by the SMILES structure.
Note, however, that we have found that when the automatic procedure for ligand preparation does not match the
curated PDB SMILES, the ligand structure may be unreliable, often with neither the PDB structure nor the inferred
structure matching that observed in the published report [16].

For the structures listed in CDK2-Early, all 38 were automatically retrieved and processed by the grindpdb
protocol, and all 38 yielded a protein and ligand. However, only 33 of the 38 protein/ligand complexes passed
the quality control checks as seen on the cdk2-plist. The complexes listed in cdk2-plist are the input to the
psim_align_all protocol. Figure 3.1 shows the full set of the 33 aligned structures. Figure 3.2 shows the structures
of the five ligands from the structures that were automatically selected by the the psim_choose_k procedure, with
polar protons shown. Note that complete protonation of ligands is required for use in the protocols described here.
All of the ligands have multiple reasonable tautomers, and the choice here was driven primarily by the interactions
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between the CDK2 hinge-binding region and the ligands (the donor/acceptor/donor motif seen in four of the five
ligands). Inference of the exocyclic double-bond from the ligand of 1KE6 was driven by the need to respect planarity
of the respective five-membered ring. Manual inspection of the full set of results reveals no errors, but certainly there
is room for some judgment with respect to some of the ligand tautomeric states. While we have tested the procedures
quite extensively on a number of targets, guarantees of correctness are not possible given the variation in the syntax,
semantic use, and quality of PDB files.

3.4 PROTOMOL GENERATION

Surflex-Dock uses a pseudo-molecule, a protomol, as the target to which to align putative ligands of a protein binding
site. There are two methods to generate the protomol: ligand-based and cavity-search-based. A protomol can be
generated as follows:

# Directory: examples/docking/streptavidin

> > sf-dock.exe mproto plist pl

10

Surflex Version 4.5
Ligand: 31 atoms
Original protein (ligdist 100000.00): 7044 atoms --> 7044

Protein: 7044 atoms
Marking TRP-B120
Marking GLY-A48

Marking ALA-A46
Marking GLN-A24
Marking PHE-A130

475 marked grid voxels

NS 0 score: 1.6 (bump 0.0)
ND O score: 0.8 (bump 0.2)
ND 1 score: 1.5 (bump 0.0)

NA 230 score: 1.7 (bump 0.0)
NS 300 score: 0.9 (bump 0.0)

# KEY OUTPUT FILE:
# pl-protomol.mol2
# pl-corevox.mol2

The result is two files, prefixed by ”pl”, that include the protomol (’p1-protomol.mol2”) and the core voxels ("pl-
corevox.mol2”). The core voxels mark the most deeply buried regions of the ligand. Visualization can help in choosing
protomol generation parameter modifications such as altering the minimum number of voxels in the protomol or core
voxels using the -proto_minvox or —proto_corevox parameters, respectively. Figure 3.3 shows the protomol
generated. The ligand (biotin) is shown in cyan sticks. Note that the core voxels cover the ligand features nicely, and
the p1-protomol covers a larger volume of potential binding area. It is generally a good idea to visualize the generated
protomol with either the ligand, or the protein, or both, to ensure that the proper site was probed and that no errors in
file parsing occurred.

3.4.1 Protein Binding Pocket Detection

If the user has no ligand to mark where an active site may be, the user has the multicav option for the proto
command. For this example, multi-cavity detection can be done as follows:

# Directory: examples/docking/streptavidin

# Find all cavities in the protein without any ligand information.
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Ligand-based Protomol Generation

ligand ligand ligand
p1-corevox p1-protomol

Cavity-search-based Protomol Generation

‘—}1:\% & L= “]’1
By (o H

multicavs ligand ligand
protein p2-corevox p2-protomol

Figure 3.3 The core voxels mark the most deeply buried region of the pocket and the protomols cover a larger volume of potential
binding area. The protomols are sets of polar and steric probes (pl, yellow carbons; p2, purple carbons) overlayed here on the
biotin ligand (cyan). For clarity, non-polar hydrogens are not shown on the ligand and protein. The protomols generated by the
ligand-based and cavity-search-based methods are highly similar.

Make a protomol from one of those.
sf-dock.exe proto multicav protein.mol2 mc
echo protein.mol2 mc-comp-008.mo0l2 > plist2
sf-dock.exe mproto plist2 p2

vV V VvV #

# KEY OUTPUT FILES:

# mc-comp-*.mol2 A1l of the detected protein cavities marked with methane molecules
# p2-protomol.mol2 Protomol generated using mc-comp-008.mol2 as a surrogate ligand

# p2-corevox.mol2 Core voxels generated using mc-comp-008.mol2 as a surrogate ligand

# Look at the protomols and core voxels in the context of the protein:
> pym disp-multicav.pml

Specification of “multicav”” will produce pseudo-molecule files corresponding to all of the protein cavities that were
identified. The user must choose which of these to use to mark a binding site for protomol generation. In the case
of the example above, many components are produced, one for each of the four biotin binding sites in the tetramer
and one for each domain interface gap. To build a protomol for any of them, one can then specify the particular
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component as the ligand. The success of the cavity-finding algorithm in identifying ligand binding sites within apo
protein structures has been reported previously [18].

The default setting for ~proto_minvox is 500 and the default for -proto_corevox is 100. The protomol and core
voxels can be made smaller by lowering the values. However, if those values are increased, then -proto_bloat must
be used with either the -proto_minvox or -proto_corevox parameters. Examples of modifying these parameters
for the biotin/streptavidin example are shown here:

# Directory: examples/docking/streptavidin

3 > sf-dock.exe -proto_minvox 100 proto ligand.mol2 protein.mol2 sa-minvox-100

> sf-dock.exe -proto_corevox 50 proto ligand.mol2 protein.mol2 sa-corevox-50

5 > sf-dock.exe -proto_bloat 10 -proto_minvox 1000 proto ligand.mol2 protein.mol2

)
H*

)
H* O OH B O H R

w w
VvV VvV H# o H

sa-bloat-10-minvox -1000

KEY OUTPUT FILES:
sa-minvox-100-protomol.mol2 Protomol is smaller
sa-minvox-100-corevox.mol2 Core voxels remain the same
sa-corevox -50-protomol.mol2 Protomol is the same
sa-corevox -50-corevox.mol2 Core voxels are smaller
sa-bloat-10-minvox-1000-protomol .mol2 Protomol is larger
sa-bloat-10-minvox-1000-corevox.mol2 Core voxels remain the same

3.4.2 Alternative Methods for Binding Site Definition

Here, we go through alternative methods for binding site definition. These include the use of the following: protein
residues, a set of voxels, a centroid, or a bounding box. Rather than making use of either a ligand or something like a
ligand molecule file, these other methods make use of a simple ".pts" file. This example is completed by a comparison
to the traditional Surflex-Dock methods just covered above.

A .pts file can be any of 4 types: RESIDUES, VOXELS, CENTROID, or BOX. The type specification is the first line
along with an integer number (N) of points. For example, the first line of bsite_residues.pts is "RESIDUES 20".
Following the first line, there should be exactly N lines (20 in bsite_residues. pts), each with whitespace-delimited
XYZ coordinates. In the case of RESIDUES, each of the specified points should correspond to the atom of a residue.
These will be used to identify the full residues based on atomic connectivity and the residue name present in the file.
This is more robust than using names explicitly, because residue naming conventions vary and in multimers, they can
refer to multiple distant residues.

In the case of VOXELS, the set of points given will be used to identify a region in the binding site that is free of
protein contact, essentially forming a ligand to mark the binding site, and a CENTROID is the XYZ coordinates of a
single point as shown in bsite_centroid.pts. A BOX is defined by a set of points whose min/max XYZ defines
a bounding box. There must be a minimum of two such points as shown in bsite_box.pts, but additional points
(which may not be a literal box) will be used to defined the XYZ min/max box in the existing coordinate frame. The
box will be used to identify a set of voxels that are free of protein contact, again forming a ligand to mark the binding
site.

The following shows an example for each the RESIDUE, CENTROID, and BOX methods of defining a binding
site. Also shown is an example for the standard ligand approach plus one example each for the two automatic cavity
finding procedures, multicav (covered above) and psim_findcav.

Directory: examples/docking/binding-site-definition
Protein example: streptavidin/biotin on 3RY2
protein/ligand files copied from ../streptavidin/ProcessPDB/

cp ../streptavidin/ProcessPDB/stvn-1ig-*3RY2%*.mol2
cp ../streptavidin/ProcessPDB/stvn-pro-*3RY2%.mol2

Use the residues, marked by a couple of atoms each proximal to biotin
> sf-dock.exe proto bsite_residues.pts stvn-pro-3RY2.mol2 protores

# Use the approximate centroid of biotin
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> sf-dock.exe proto bsite_centroid.pts stvn-pro-3RY2.mol2 protocent

3 # Use the bounding box of biotin defined by the two corners

> sf-dock.exe proto bsite_box.pts stvn-pro-3RY2.mol2 protobox

# The standard approach is to use a ligand:
> sf-dock.exe proto stvn-1ig-3RY2-BTN.mol2 stvn-pro-3RY2.mol2 protolig

We can also find cavities automatically.

Here, the process finds all four of the biotin binding sites
and also four interstitial sites that have no bound ligands:
sf-dock.exe proto multicav stvn-pro-3RY2.mol2 protomc

NOTE: protomc-comp-006 corresponds to stvn-1ig-3RY2-BTN.mol2

H OV oH H

We can also find cavities and build protomols automatically

using the psim_findcav command.

sf-dock.exe psim_findcav stvn-pro-3RY2.mol2 protofind

NOTE: protofind-p00[0,2,5,7] correspond to the different biotin binding sites.

H# VvV oH

H*

Visualize and compare the binding site definitions
> pym disp.pml

Binding Site Definition — Ligand or Residue Specification

3RY2 protein and ligand 3RY?2 protein and ligand
Standard ligand based protomol Residue based protomol

Figure 3.4  Shown are the crystallographic 3RY?2 protein (green) and instantiation 1 of 4 for biotin (cyan). The thin sticks show
the protomols derived from the standard ligand based protocol (left, purple sticks) and the residue based protocol (right, salmon
sticks).

The six binding site definition protocols demonstrated here provide the user with extensive flexibility. Figure 3.4
shows the resulting protomols for the standard ligand procedure (left, purple sticks) and the RESIDUE procedure (right,



DOCKING A SINGLE MOLECULE OR A LIST OF MOLECULES 41

salmon sticks). Since the chosen residues were in the immediate vicinity of the native biotin ligand, it was expected
that these two binding site definitions would yield these highly similar protomols. The protomols from the CENTROID
and BOX specifications also yielded sensible and functional protomols and these can be visualized by opening the
disp.pml file. Figure 3.5 shows the binding sites found by the two automatic cavity detection methods, proto
multicav (left, tan sticks) and psim_findcav (right, pink sticks). The shown pseudo-ligand protomc-comp-006
generated by proto multicav can be used in a subsequent step to generate a protomol. In contrast, psim_findcav
performs both automatic cavity detection and protomol generation.

Binding Site Definition — Automatic Detection

3RY2 protein and ligand 3RY2 protein and ligand
proto multicav psim_findcav

Figure 3.5 Shown are the crystallographic 3RY?2 protein (green) and instantiation 1 of 4 for biotin (cyan). The thin sticks show
the sites marked by two automatic cavity finding protocols: left in tan sticks, biotin site 1 found by multicav, and right in pink
sticks, the protomol from psim_findcav.

3.5 DOCKING A SINGLE MOLECULE OR A LIST OF MOLECULES

Docking requires a prepared ligand, a protomol, and a protein. To dock a single molecule from a file containing a
single conformation, using parameters for thorough search in order to produce reliable predictions of bound pose, run
the following command:

# Directory: examples/docking/streptavidin

# Generate a randomized starting conformer
> sf-tools.exe ran_archive ligand.mol2 ligand

# Prepare the randomized conformer for docking
> sf-tools.exe -pgeom forcegen ligand-random.mol2 prep
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Docking of a Random Conformation of Biotin into Streptavidin

ligand ligand
docked poses docked poses top-scoring pose
protein

Figure 3.6 In magenta carbons are the docked conformations from a random starting pose of biotin relative to the reference
ligand (cyan) shown with and without the streptavidin pocket (green). On the right is the top scoring pose overlayed on the native

ligand (cyan).

# Then we dock the randomized conformation of biotin

> sf-dock.exe -pgeom dock prep.sfdb pl-protomol.mol2 pl-corevox.mol2 protein.mol2
# KEY OUTPUT FILES:

# sfdock-log The log file cataloging the scores for docked poses
# sfdock-log-results.mol2 The docked poses themselves

# Look at the cognate docking results:

pym disp-cognate.pml

Surflex-Dock will take a thorough approach to conformation and alignment optimization in order to optimize the value

of

its scoring function, subject to the energetic constraints of the molecule. The dock command is short-hand for the

dock_1ist command, where the normal user-specified output prefix is simply set to “sfdock-log” instead of being
specified by the user. It is much more common to actually dock a list of molecules, as follows:

#
#

#
>
Li

Re

Directory: examples/docking/steptavidin
FILE CONTENTS: prep.sfdb (generated by the sf-tools/forcegen command)

Dock the ligand as part of a list for geometric accuracy
sf-dock.exe -pgeom dock_list prep.sfdb pl-protomol.mol2 pl-corevox.mol2 protein.mol2

loggeom

gand biotin: 31 atoms, 5 bonds: About to align conformers (ligand 31 atoms, protomol 963

atoms, nconfs 109)
LKk KK KoK koK ok K KoK koK KR koK Kok R KR Kok Rk R koK Rk Rk ok k ok kkkkxk Scoring _GDM: . (0) . (200) .(400) ....
fining: ... ... i i
lishing: ......................

Po

El

ab_Mol_in_PROTEINS: (NRot: 5)...biotin: 31 atoms, 5 rot (210.2 vol): time 6.000
[biotin_000: 14.071 crash -0.43 polar 9.26 strain 2.01 ]
[biotin_001: 14.020 crash -0.32 polar 9.14 strain 1.53 ]
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[biotin_002: 13.275 crash -1.29 polar 8.93 strain 5.75 ]

# KEY OUTPUT FILES:

# loggeom

# loggeom-results.mol2

# loggeom-results_tab.log

The final output with the -pgeom parameter set is up to 100 conformations that are filtered to be diverse. The poses of
the docked molecules are in the *-results.mol2 file. The specific log file contains information on each molecule that
was docked. For the docking of biotin from above, the loggeom file was as follows:

biotin: 31 atoms, 5 rot (210.2 vol): time 6.000
[biotin_000: 14.071 crash -0.43 polar 9.26 strain 2.01 ]
[biotin_001: 14.020 crash -0.32 polar 9.14 strain 1.53 ]
4 [biotin_002: 13.275 crash -1.29 polar 8.93 strain 5.75 ]
[biotin_003: 13.228 crash -0.76 polar 8.98 strain 3.26 ]
6 [biotin_004: 13.225 crash -0.77 polar 8.99 strain 3.29 ]
[biotin_005: 12.673 crash -1.51 polar 8.64 strain 6.79 ]

The name of each molecule is followed by information from the docking, including the total time (in seconds). There
are four scores for each docked conformation: a nominal affinity that is considered to be the total score (-log(Ky)),
a crash score (also pKy units), the portion of the total score that resulted from polar interactions, and the total strain
energy of the conformer in kcal/mol. The polar contribution is the amount of the total affinity score that is due to polar
interactions. This value can be useful in eliminating, for example, docking results that make no hydrogen bonds. The
crash score is the degree of inappropriate penetration into the protein by the ligand as well as the degree of internal
strain that the ligand is experiencing. Crash scores that are close to 0.0 are favorable. The total reported score includes
the crash score reported. The final docked conformations are reported in descending order of total score. The name
of the molecule in the original input molecule file is carried through into the output, with the pose number appended.

3.6 MOLECULAR STRAIN

With the implementation of MMFF94sf within Surflex, the treatment of molecular strain has become more detailed
than in prior versions. Previously, using the DREIDING approach, molecular geometries regarding bond lengths and
angles were tightly respected, but torsional variations were explored freely, with ligand self-clashing being used to
prevent against excessively high energy poses. Now, a baseline energy is established using the Tools module forcegen
command (and stored in the resulting SFDB files), and strain is calculated relative to this value. Our the more recent
work involving explicit modeling of bound ligand strain is recommended [19-21].

There are two parameters that govern the calculation of strain: -mmsweight controls the weighting of the deviation
from the baseline energy value (default 0.2), and -mmwiggle controls amount of weighted strain that a ligand gets “for
free.” The nominal value of the first parameter would be 0.74 if one were to exactly equate ligand strain (measured
in kcal/mol in MMFF94) and docking scores (measured in pK, in Surflex-Dock). However, by downweighting the
nominal strain value, we achieve the effect of some binding pocket accommodation without needing to explicitly
model the movement of protein atoms. Further, the -mmwiggle parameter allows for geometric excursions beyond
the solution minimum energy value without affecting a ligand’s score. The default pair of values has the effect that
any nominal ligand strain above the global minimum is reported (as with previous BioPharmics Platform versions) in
the “crash” value, which includes the inter-molecular clashing effect.

Note that because the nominal forcefield energy is downweighted, the strain values may appear to be nominally
high. Better estimates of strain can be obtained by employing the Tools module bound_energy command on final
pose families, as follows.

# Directory: examples/docking/streptavidin

# It is best to generate a pose family and consider the top one
4+ # (or the best of the top few) for strain estimation.
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> sf-dock.exe posefam loggeom

# KEY OUTPUT FILES:
# loggeom-topfam.mol2 Top ranked pose family for biotin

# Now we can compute the bound conformational energy
# using restrained local minimization:

> sf-tools.exe bound_energy loggeom-topfam.mol2 none bound

# And estimate the global minimum using the SFDB we made before:
sf-tools.exe unbound_energy prep.sfdb glob

Grab the values and calculate the strain:

grep Boltzmann bound-log | awk ’{print $6}’ > bound-en
grep Boltzmann glob-log | awk ’{print $6}’ > glob-en
paste bound-en glob-en | awk ’{print ($1-$2)3}’ > strain

vV V VvV #

> # The strain is negligible for biotin: 0.06 kcal/mol

The intramolecular strain of a ligand is estimated by subtracting the energy of the global minimum conformer from
the energy of the bound ligand. First, docked poses are grouped into geometrically related ensembles that surround
a given central pose, and a Boltzmann weighted probability yields a likelihood ranking of the families. To obtain
the bound energy, the top pose family is subjected to restrained local minimization. Here, as seen in file bound-en,
the bound energy is 29.62 kcal/mol. The conformer pool prep.sfdb was previously generated from an agnostic
(unrestrained) —pgeom level search of a random conformer of biotin and therefore serves as a source of the global
minimum conformer. As seen in file glob-en, the global minimum energy is 29.56 kcal/mol. Thus, the strain for
biotin is 29.62 - 29.56 = 0.06 kcal/mol (a negligible strain). Additional examples of this type of strain calculation are
shown in the Advanced Applications Chapter of the manual.

In cases where receptor structures are relatively flexible, increase in the -mmwiggle parameter can yield improve-
ments in virtual screening enrichment. This is also true for decreases in the -mmsweight parameter. The converse is
true for more rigid receptor structures. Systematic variation of these values under widely varying use cases is planned
and will be the subject of a forthcoming paper.

3.7 DIFFERENT DOCKING SCHEMES FOR DIFFERENT APPLICATIONS

The earliest versions of both Hammerhead and Surflex-Dock exclusively explored ligand conformations in a tightly
coupled fashion with the docking process. Because of definite benefits and efficiencies from systematic conformational
exploration (including rings), all docking protocols now require the use of the Tools module ligand preparation
protocols. For different types of applications, different levels of conformational elaboration are required.

3.7.1 Virtual Screening: -pscreen and -pfast

Virtual screening balances the need for fast calculations (seconds per molecule) against the need for adequate sampling
of the pose space available to each ligand with respect to a particular target. Surflex-Dock offers two approaches, both
of which make use of pre-elaborated conformers, -pscreen and -pfast. Both approaches are widely tested.

Two examples of the use of virtual screening are provided in the examples. Both come from some of the earliest
public benchmarks for measuring virtual screening efficiency [5, 22]. Both the thymidine kinase and estrogen receptor
examples run as follows:

# Directory: examples/docking/screen-tk
# Generate the protomol using the protein and ligand

3 > sf-dock.exe mproto plist mpro

5 # Prepare the ligands for docking

> sf-tools.exe -pscreen forcegen TestMols.mol2 psact



DIFFERENT DOCKING SCHEMES FOR DIFFERENT APPLICATIONS 45
# Combine with previously (identically) prepared decoys
> cat psact.sfdb ../Zinc1000ps.sfdb > psmols.sfdb

# Run virtual screening using pre-searched conformers
> sf-dock.exe -pscreen gdock_list psmols.sfdb mpro-targets logpscreen

# KEY OUTPUT FILES:
# logpscreen Scores for all ligands

# logpscreen-results.mol2 Corresponding poses

# Generate ROC analysis

# ROC curves and plot:

> echo ; echo ; echo PSCREEN

> grep -v ZINC logpscreen | grep _000 | awk ’{print $2}’ > pos ; grep ZINC logpscreen |

grep _000 | awk ’{print $2}’ > neg
> sf-tools.exe roc -ci 95 1000 pos neg roclogpscreen

# Look at the virtual screening results
> pym disp.pml

Using the -pscreen option, the docking procedure investigates the pre-elaborated conformations most thoroughly,
with additional local optimization within the binding pocket. Particularly for ligands with relatively limited flexibility
(0-10 rotatable bonds), as is often the case in screening libraries, this approach is very effective. In the case of
thymidine kinase, the resulting ROC area is 0.96, with very high early enrichment.

For the estrogen receptor case, an ensemble of protein structures is used along with a the set of cognate ligands for
those protein variants. This is the strongly recommended protocol (a full study comparing single- to multi-structure
screening enrichment provides more details [23].

# Directory: examples/docking/screen-er
# Generate the protomol using the protein and ligand

3 > sf-dock.exe mproto plist mpro

19

# Prepare the ligands for docking
> sf-tools.exe -pscreen forcegen TestMols.mol2 psact

# Combine with previously (identically) prepared decoys
> cat psact.sfdb ../Zinc1000ps.sfdb > psmols.sfdb

# Run virtual screening using pre-searched conformers
# This employs five variant proteins and the cognate poses of their ligands

3 > sf-dock.exe -lmatch KnownPoses.mol2 -pscreen gdock_list psmols.sfdb mpro-targets

logpscreen

# KEY OUTPUT FILES:

# logpscreen Scores for all ligands

# logpscreen-results.mol2 Corresponding poses

# Generate ROC analysis

# ROC curves and plot:

> echo ; echo ; echo PSCREEN

> grep -v ZINC logpscreen | grep _000 | awk ’{print $2}’ > pos ; grep ZINC logpscreen |

grep _000 | awk ’{print $2}’ > neg

3 > sf-tools.exe roc -ci 95 1000 pos neg roclogpscreen

# Look at the virtual screening results
> pym disp.pml

In the case of estrogen receptor (see examples/docking/screen-er), where much more significant flexibility exists
within the ligands, using the identical procedure, we see ROC areas of 0.98—0.99. Figures 3.7 and 3.8 show the ROC
curves along with well-docked examples from both targets.

A common variation for screening makes use of the faster —~pfast search setting: this is useful when screening
very large libraries of compounds. This can be run as follows:
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Figure 3.7 Docking results for the standard virtual screening protocol pscreen using thymidine kinase. The ROC curve show
excellent performance for the method. The upper right shows the protein pocket and native ligand with the docked poses of
positives AHIU and ganciclovir. The bottom row shows the 3D overlay of the native ligand and two docked positives as well as
each molecule individually.

# Directory:
> # Run virtual screening using the faster protocol (TK case)
> sf-dock.exe -pfast gdock_list psmols.sfdb mpro-targets logpfast

examples/docking/screen-tk or

.../screen-er

# Run ensemble virtual screening using the faster protocol with known poses (ER case)
> sf-dock.exe -1lmatch KnownPoses.mol2 -pfast gdock_list psmols.sfdb mpro-targets logpfast

# KEY OUTPUT FILES:
# logpfast

# logpfast-results.mol2

Scores for all ligands

Corresponding poses

For the thymidine kinase and estrogen receptor cases, both the pscreen and pfast virtual screening protocols produce
extremely good results.

Note that the detailed treatment of ligand strain can have an impact on screening enrichment. The default setting
allows no ligand strain “for free” (-mmwiggle 0.0), though the nominal magnitude is downweighted by roughly a
factor of four from idealized physics (-mmsweight 0.2). Depending on the particular target, loosening the strain
weighting (increasing the wiggle or decreasing the strain weight) may produce better results, but the converse may
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Figure 3.8 Docking results for the standard ensemble protein virtual screening protocol using estrogen receptor. The ROC curve
shows excellent performance for the method. The upper right shows the five protein pocket variants and native ligands with the
docked pose of positive ESTO1. The bottom left shows the docked pose of EST03, a very large antagonist, with the protein structure
(PDB code 2R6Y) that is most compatible with it.

also be true. Performing some systematic experiments to understand the behavior of known positives and a pool of
decoys (as used here) is recommended prior to embarking on a large screening campaign for a particular target.

3.7.2 Docking using Explicit Conformational and Positional Constraints

Surflex-Dock includes options to constrain the conformation and alignment of ligands under study, which can be useful
in systematic analysis of series of molecules that share a common core. The relevant options are —torcon for torsional
constraints during ligand prep (see the Tools chapter) and —poscon for positional constraints during docking. Both
types of constraints are specified by providing a set of substructural fragments. An example of running both —torcon
and -poscon is given using the streptavidin docking case:

# DIRECTORY: examples/docking/strepavidin
# KEY INPUT FILE: btn-frag.mol2

# Ensure that the underlying torsions conform to that constraint as well
5 > sf-tools.exe -torcon btn-frag.mol2 -pgeom forcegen ligand-random.mol2 prepcon

7 # KEY OUTPUT FILES:
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Docking using Explicit Positional and Conformational Constraints

biotin fragment biotin fragment pos. constraint wiggle pos. constraint no wiggle
native ligand docked conformers docked conformers

pos. constraint with small wiggle stronger pos. constraint with no wiggle
top-scoring docked conformer top-scoring docked conformer

Figure 3.9 Examples of docking making use of a placed biotin fragment (magenta). Two of the four tryptophan residues in
the streptavidin tetramer pocket (green lines) can be seen, one in front and one behind the ligand. Although both of the docking
protocols generate top poses nearly identical to that of the native ligand (bottom row), the protocol with the stronger positional
constraint yielded a pose family (violet) with tighter concordance to the native ligand head group. The user can specify positional
constraints alone or include wiggle constraints.

prepcon.sfdb

Now, we will dock the ligand using the constraint:
sf-dock.exe -pospen 5.0 -pwiggle 0.2 -poscon btn-frag.mol2 -pgeom gdock_list prepcon.sfdb
pl-targets logconl

Now, we will dock the ligand using the constraint, but with no wiggle and a high penalty:
sf-dock.exe -pospen 10.0 -pwiggle 0.0 -poscon btn-frag.mol2 -pgeom gdock_list
prepcon.sfdb pl-targets logcon2

Look at the positional constraint docking results:
pym disp-poscon.pml

In this mode, the placed fragment tells Surflex-Dock where to place the ring system of biotin, and a flat-bottomed

quadratic penalty is imposed upon deviations from the matched substructure (see the Tools chapter for more details).
This guides the alignment aspect of docking, and also constrains the conformation of the subfragment. Conformational
search beyond the fragment is still guided by the protomol and scoring function. This mode of docking is quite fast,
and it allows for careful control on the part of the user. Using this approach with the -pgeom scheme may be useful in
identifying optimal poses for a ligand with a particular core as well as visualizing the extent to which the ligand might
move within the active site. Figure 3.9 shows the result of docking biotin with the geometric accuracy parameter
-pgeom and positional constraint -poscon. The lower panel shows the top scoring docked conformer relative to
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native biotin with and without a wiggle penalty -pwiggle. Note that both protocols result in a top pose with better
placement of the constrained head fragment resulting in a favorable shifting of the biotin tail. This is due to the fixed
geometry of the carbon-carbon bond that connects the biotin head and tail fragments. The protocol with the stronger
positional constraint yielded a pose family (violet) with tighter concordance to the native ligand head group.

In a similar fashion, a torsional constraint can be placed on input ligands during ligand preparation. For ligands
where maintaining a particular internal geometry is desirable based on either a design idea or based on a sophisticated
calculation of ideal geometry, this option, —torcon, is used with the forcegen command. In a subsequent section,
an example of combining a torsional constraint during conformer elaboration with ensemble docking with a positional
constraint on a molecular fragment is given using thrombin. The molecular fragment is composed of a benzamidine
moiety and a linker. During the forcegen ligand prep procedure, the —torcon parameter results in a torsional
constraint on the linker.

NOTE: The default behavior is for ligands without matching substructures to the specified positional constraint to
be skipped, but this behavior can be suppressed by specifying —~skipnonmatch.

3.8 PROTEIN POCKET SIMILARITY AND ALIGNMENT

Frequently, when docking, several structures may be available. Surflex-Dock offers a surface-based similarity method
(PSIM) for automatically and quantitatively aligning multiple protein binding sites. Surflex-Dock Version 2.6 and up
offers a method to induce surface-based alignments of protein binding pockets (see [13]). There are four commands:
psim_align_all, psim_matrix, psim_one, and psim_list.

The psim_align_all command works as follows:

# Directory: examples/docking/pdeb

FILE CONTENTS: PDBList
1T9S
1TBF
2H44
1X0Z

H*

Produce the pdbgrind script
> sf-dock.exe getpdb PDBList pdeb

# Run it

3 > source pdeb-script

s # Align the proteins

> sf-dock.exe psim_align_all pdeb5-plist pde5_align ; rm *grid

# Create a pdf document of the alignment tree
> dot -Tpdf -o pdeb_align-tree.pdf pdeb_align.AlignmentTree.dot

KEY OUTPUT FILES:
pde5-pro*mol2 Protein structures
pde5-1lig*mol2 Ligand structures
pde5-plist List of complexes appropriate for psim_align_all
pde5_align-cO-lig*mol2 Aligned ligand structures
pdeb5_align-cO-pro*mol2 Aligned protein structures
pde5_align.AlignmentTree.dot Dot file to make a tree
# Look at the aligned PDE5 structures:

> pym disp-aligned.pml

The automatically generated protein site list file (“pde5-plist”) contains on each line: a protein file path, a specified
number of ligands that identify binding site locations, and ligand files corresponding to the sites. Common ligands
such as acetate ion, ethylene glycol, and tris buffer are ignored. In the example, the proteins include PDES bound to
icarisid II, GMP, sildenafil, and tadalafil. Tadalafil bound to PDES is also included, as we will be using that ligand as
a test for the ensemble docking procedure. The alignment command performs an all-by-all comparison of the protein
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Figure 3.10  Four aligned PDES structures are shown in ribbons and in sticks with native sildenafil in the pocket of both depictions.
The alignment of the structures (bound to icarisid II, GMP, sildenafil, and tadalafil) shows the movement possible within the pocket
(upper right). The alignment tree of four PDES structures shows the degrees of similarity between the aligned protein binding sites.

binding sites, and it constructs a tree using single-linkage hierarchical clustering, where the edges are labeled with
the binding site similarity values. PSIM will align all sites within a protein such that, for example, a binding site and
an allosteric site may be assigned in different clusters. In contrast, the identical binding sites in dimers such as the
estrogen receptor will likely occupy the same position in a cluster. The “dot” command (a widely available graphics
package) will produce a PDF file that displays the resulting alignment tree (see Figure 3.10).

The clustering procedure may produce several separate clusters. Edges between protein binding sites are removed
when they are lower than the value specified by the —-psim_tree parameter (default 0.65). The aligned protein and
ligand files and their relationship to the input files are listed in the respective cluster log file, as follows. Figure 3.10
shows the alignment of four PDES proteins using the psim_align_all command.

Note that the psim commands compute grids for proteins, which can be time consuming. These grids are cached to
disk (*.grid), but because they are in binary format, they are not generally cross-platform compatible. So, if a problem
is encountered when reading such a grid file (evident from the standard output on the console), the grids should be
removed so that they will be recomputed (e.g. rm *.grid).
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3.9 DOCKING TO MULTIPLE PROTEIN CONFORMATIONS (ENSEMBLE DOCKING)

Many proteins undergo substantial rearrangement on binding different ligands. Surflex-Dock supports docking to
a set of protein targets with the gdock_list command being used in this new generalized protocol (beginning in
Version 4.0). Multi-structure docking requires aligned protein structures in order to provide the full benefit of all
available workflows. The “psim_align_all” command offers an ideal way to both make such alignments and to make
sensible choices of which proteins should be used (it has been tested on 359 structures within a single tree). The
“psim_matrix” command is identical, except that only one ligand per line is allowed in the site list file (and there is
therefore no specification of the number of ligands, just the protein and ligand on each line). Often, there is a need
to make a sensible choice from among many alternate structures. While it is tempting to make a choice of, say, the
five most different structures, that can have the effect of allowing outlier variants to dominate the choice. Instead, one
can choose the five central exemplars of the five most separate clusters. This is facilitated by the “psim_choose_k”
command. Previously, Figure 3.2 showed the structures of five CDK2 ligands that were automatically selected by the
the psim_choose_k procedure. These five structures will be used in an ensemble docking in a later example.

Here, we will simply choose the three structures excluding the cognate complex with tadalafil. The file “ProtList”
contains each aligned protein and the corresponding ligand, one per line. This serves as input to the mproto command,
which prepare the set of proteins for ensemble docking.

Directory: examples/docking/pdeb

Create ProtoList for mproto:

Contents is the aligned proteins/ligands for docking:
pde5_align-cO-pro-1T9S-5GP.mol2 pde5_align-c0-1ig-1T9S-5GP.mol2

pdeb5_align-cO-pro-1TBF-VIA.mol2 pde5_align-cO-1lig-1TBF-VIA.mol2
pdeb5_align-cO-pro-2H44-7CA.mol2 pde5_align-cO0-1ig-2H44-7CA.mol2

H OH O OHE

H*

Rename the native pose of tadalafil
> mv pdeb_align-c0-1ig-1X0Z-CIA.mol2 tadalafil-bound.mol2

# Create a set of known poses from the other 3 native ligands:
> cat pdeb_align-cO-lig*.mol2 > KnownPoses.mol2

# Generate the protomols and target list
> sf-dock.exe mproto ProtolList pdeb

# KEY OUTPUT FILES:

# pdeb-targets A target description file for docking
# pdeS5*-protomol.mol2 Protomols for each binding site

# pdeS5*-corevox.mol2 Core voxels for each binding site

Now we are ready to dock any number of new ligands using these three aligned protein structures as the target. In order
to eliminate all bias regarding the known pose of tadalafil, we will begin from the structure generated by PubChem
(“CID_110635.sdf”):

# Directory: examples/docking/pdeb

# First, we need to prepare the ligand

> sf-tools.exe -pgeom forcegen CID_110635.sdf prep

# Dock tadalafil using the native poses of the other 3 ligands as hints
> sf-dock.exe -1lmatch KnownPoses.mol2 -pgeom gdock_list prep.sfdb pdeb-targets loggeom

# Build pose families using default parameters
> sf-dock.exe -posehints KnownPoses.mol2 posefam loggeom

# If desired, on can make the pose families larger by including lower scoring poses

> # and by grouping slightly more different poses together

# sf-dock.exe -poseprob 1le-10 -rmsbin 2.0 -posehints KnownPoses.mol2 posefam loggeom

# KEY OUTPUT FILES:
# loggeom Log file reporting the pose scores
loggeom-posefam Log file reporting the pose family statistics

H*
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Figure 3.11 Results for docking tadalafil using gdock_list into three aligned protein structures. The cognate ligands of each of
the three structures were very different from tadalafil (and from one another). These differences were reflected in the binding site
configurations. Despite these challenges, the derived top-scoring pose of tadalafil was very close to that observed in the native
structure (comparison shown at bottom right).

18 # loggeom-fam.mol2 Pose families (family number and pose number
# in the conformer names)
20 # loggeom-topfampose.mol2 Top pose of top pose family

2 # Look at the multistructure cross docking results:
> pym disp-crossdock.pml

The overall result of the docking of tadalafil to this set of three structures (which were bound to very different scaffolds)
is shown in Figure 3.11. Generation of the pose families for the tadalafil docking results made use of the -poseprob
and -rmsbin parameters to illustrate the ability to re-group pose family members.
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3.10 EXPLOITING ALL KNOWLEDGE IN DOCKING FOR BOUND POSE PREDICTION

The “gdock list” approach to docking is the most thorough approach within Surflex-Dock for making pose predictions
from protein structures. It can make use of pre-existing knowledge of many bound ligands, and it has been demonstrated
to yield close-to-cognate performance on novel ligand docking using a very large benchmarking data set (the “PINC
Benchmark™) [15]. Extensive discussion of the method and its application are discussed in the paper. Use of the
approach is very straightforward, with the key difference in docking being that ligands to be docked must be pre-
searched. The typical use of the approach is illustrated as follows on an example involving CDK2. The structures
here come from the Tools module example on protein preparation:

# Directory: examples/docking/cdk2
# Make a single multi-mol2 with *all* of the aligned ligands

3 > cat ../protein/cdk2_align-cO-lig*.mol2 > EarlyHints.mol2

19

H H o H

Generate a script to copy the cluster center proteins and ligands

from examples/docking/protein:

grep Center ../protein/cdk2-choose > cdk2-best

cat cdk2-best | awk ’{print "cp ../protein/" $2 " ../protein/" $3 " . "}’ > copy-cdk2
source copy-cdk2

vV V VvV # #

H*

Look at the aligned cluster center proteins
> pym disp-aligned.pml

# Construct protomols for the 5 CDK2 variants
> sf-dock.exe mproto cdk2-best cdk2dock

# KEY OUTPUT FILES:

# EarlyHints .mol2 Aligned poses of bound ligands used for

# docking guidance *and* pose family prediction
# cdk2dock*-protomol.mol2 Protomols for the 5 protein variants

# cdk2dock*-corevox.mol2 Core voxels for the 5 protein variants

The approach makes use of multiple strategies for fitting the ligand into the binding pocket; consequently, it can require

several minutes per ligand to complete the computation. Note that alignment and choice of protein variants using the

psim methods yields improved performance over either random selection or selection of the N most different variants.
Given the preparation and selection, docking takes place as follows:

Directory: examples/docking/cdk2
KEY INPUT FILES:
cdk2dock-targets The targets specification file (and what it points to)
EarlyHints.mol2 The aligned structures of known bound ligands
# We will grab an interesting future CDK2 inhibitor: the ligand of 2XNB
> echo 2XNB > getlist # Make this easy: no button clicks
> sf-dock.exe getpdb getlist xnb # Make the script to get 2XNB
> source xnb-script # Grab and grind the protein structure
> cp xnb-1lig-2XNB-Y8L.mol2 xnb.mol2 # Simpler file name
> sf-tools.exe ran_archive xnb.mol2 xnb # Randomized ligand --> xnb-random.mol2

H*

Now prepare the ligand
> sf-tools.exe -pgeom forcegen xnb-random.mol2 prepxnb

# Dock the ligand using a thorough procedure with pre-existing knowledge
> sf-dock.exe -pgeom -lmatch EarlyHints.mol2 gdock_list prepxnb.sfdb cdk2dock-targets logxnb

# Generate pose families using similarity to the prior ligands to assist
> sf-dock.exe -posehints EarlyHints.mol2 posefam logxnb

# Find the true Xtal configuration in the right coordinate frame:

3 > sf-dock.exe psim_one xnb-pro-2XNB.mol2 xnb-1lig-2XNB-Y8L.mol2

cdk2_align-cO-pro-1KE6-LS2.mol2 cdk2_align-cO0-1lig-1KE6-LS2.mol2
> cp psim_ligand.mol2 gold-xnb.mol2
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# Look at the top-scoring pose family and top-scoring pose relative to the native XNB pose:
> pym disp-xnb.pml

# KEY OUTPUT FILES:

# logxnb-fam.mol2 All pose families

# logxnb-topfampose.mol2 Top pose of top pose family
# gold-xnb.mol2 Crystallographic pose

# logxnb-posefam Pose family statistics

The top-scoring pose family of the 2XNB ligand matches that observed from experiment.

The Surflex-Dock scoring function has been optimized to consider a large number of protein/ligand complex
configurations while keeping computational costs low [12]. Increased sampling can lead to docked poses that appear
to be energetically favorable but are unlikely to be biologically relevant. The pose family function was developed
such that docked poses could be grouped into geometrically related ensembles that surround a given central pose. A
Boltzmann weighted probability yields a likelihood ranking of the families and up to 10 pose families are generated.
Figure 3.12 shows the top resulting pose family for the multi-structure docking of 2XNB to CDK2. As seen in the
output file logxnb-posefam, pose family 1 has 21 poses and a 98% probability of containing the most relevant pose
while pose family 2 (not shown) has 6 poses and only a 44% probability of having the most correct pose. The upper
right panel of figure 3.12 shows the top scoring pose of pose family 1 relative to the pose of the 1KE®6 ligand, an early
hint molecule. The blue and red arrows indicate correspondence of H bond donors and acceptors, respectively. We
have previously published a thorough discussion and illustration of the similarity of the surface shape and electrostatics
between the predicted pose of 2XNB and an early hint molecule [15]. While the 2XNB and 1KE6 ligands are both
aniline derivatives, it is the similarity of the more structurally-divergent parts that underlies the high similarity.

An example of combining ensemble docking with a positional constraint on a molecular fragment is given using
thrombin, as follows:

# Directory: examples/docking/thrombin

3 # Grab some PDB structures, grind them, and align them together:

19

echo 1G32 > PDBList ; echo 1BHX >> PDBList ; echo 1DWD >> PDBList ; echo 1DWB >> PDBList

sf-dock.exe getpdb PDBList thr # Produce the pdbgrind script
source thr-script # Run the script

sf-dock.exe psim_align_all thr-plist thr_align # Align the structures

cat thr_align-cO-lig-1*mol2 > PoseHints.mol2 # Produce a pose hints file

# Dock new thrombin ligands. First need to prepare them
sf-tools.exe -pgeom forcegen new-mols.mol2 pgmols

Create ProtolList for mproto:

Contents is the aligned proteins/ligands for docking:
thr_align-cO-pro-1BHX-R566.mol2 thr_align-cO-1lig-1BHX-R56.mol2
thr_align-cO-pro-1DWB-BEN.mol2 thr_align-cO-1lig-1DWB-BEN.mol2
thr_align-cO-pro-1DWD-MID.mol2 thr_align-cO-1ig-1DWD-MID.mol2
thr_align-cO-pro-1G32-R11.mol2 thr_align-cO0-1lig-1G32-R11.mol2

HOoH H O OH H

# Look at the 4 aligned proteins:
> pym disp-aligned.pml

# Make protomols and then dock:
> sf-dock.exe mproto ProtolList thr
> sf-dock.exe -1lmatch PoseHints.mol2 -pgeom gdock_list pgmols.sfdb thr-targets loggeom

# Make the pose families
> sf-dock.exe -posehints PoseHints.mol2 posefam loggeom

# Look at the top-scoring pose families for the 3 thrombin ligands:
> pym disp-posefam.pml

# The benzamidine fragment fits a bit differently in the pocket for
# the meta-substituted compounds. We can use a common core fragment to
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Ensemble Docking with Early Hints using CDK2

native 1KEG6 ligand
XNB-Y8L top pose

native 1HO1 ligand
XNB-Y8L top pose

2XNBligand | \ive 2XNB ligand

XNB-Y8L top pose

native 2XNB ligand
XNB-Y8L top fam

Figure 3.12  Results for docking the 2XNB ligand using -1match and Early Hints into five aligned CDK2 protein structures.
The native ligands for two of the target proteins, 1KE6 and 1HO1, are shown. The target proteins were the cluster centers that
resulted from the psim choose k procedure. Despite the challenges, the derived top-scoring pose was very close to that observed in
the native structure (comparison shown at bottom right).

# explore the poses that the ligand variants can adopt within thrombin

We have made a fragment from the top-scoring pose of mol-03-fam000
called pos-frag.mol2

The fragment contains the benzamidine along with a part of

the sulfonamide linker...

H oH B ®

> sf-tools.exe -torcon pos-frag.mol2 -pquant forcegen new-mols.mol2 pcon
sf-dock.exe -poscon pos-frag.mol2 -pquant gdock_list pcon.sfdb thr-targets logcon

v

5 > sf-dock.exe -posehints PoseHints.mol2 posefam logcon

# Now the top pose families have explored the poses where the
# subfragment has a constrained location.

# Look at the top-scoring pose families:

> pym disp-poscon.pml

The above series of commands first prepares a set of thrombin structures for docking, including PDB file retrieval,
protonation of proteins and ligands (including inferences about bond order and tautomeric states), then a standard



56 DOCKING MODULE TECHNICAL MANUAL

Ensemble Docking with Pose Hints or Positional Constraint using Thrombin

N 7 e
z "H,NZ NH, H N
4 aligned THR proteins  benzamidine o’/S\:N o
o

native benzamidine H

O¢§,N\C
0
*HoN? > NH, THaNT TNH,
fragment mol 03 mol 03

native benzamidine ¥ native benzamidine .
loggeom-mol-03 top fam loggeom-mol-03 top pose

pose fragment

1\é pose fragment
pose fragment logcon-mol-03 top fam

logcon-mol-03 top pose

Figure 3.13  Four aligned thrombin structures and the native ligand benzamidine (cyan) are shown. The docking of thr-mol-03
was performed using either -1match with pose hints or -poscon with a positional fragment. For both protocols, the top scoring
pose family (magenta) and the top pose are shown. The docking using pose hints resulted in a reasonable pose family and top pose.
However, the pose family resulting from the use of a fragment-based torsional constraint during ligand preparation and positional
constraint during docking shows remarkable coherence of poses and tight superimposition on the fragment.

geometric docking is performed. The top-scoring pose families show two different sets of positions for the benzamidine
and its attached linker (see Figure 3.13).

Design of new ligands in a series may depend on ideas about precise placement of substituents within an active
site. One may also want to derive a QuanSA model beginning from a well thought-out starting point. In such cases, a
molecular fragment can be used to drive the docking process, focusing attention on other degrees of freedom within
the ligands in question. Here, the benzamidine and its linker from the top scoring pose of the top pose family of mol-03
is used (see Figure 3.13) to re-dock the three ligands. During the forcegen procedure, the -poscon parameter results
in both a positional constraint on the benzamidine and a torsional constraint on the linker. It would be a waste of
conformational search to allow the linker to rotate since its geometry is established. Using the -pquant parameter
scheme to allow for full exploration of the constrained poses, the final top-scoring pose families show coherent behavior
(see Figure 3.13).
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3.11 POST-PROCESSING RESULTS

The recommended procedures for post-processing involve simple use of Unix-style utilities for identification of high-
scoring ligands based on any combination of criteria a user desires. For example, the following will retrieve all
molecules from docking log and results files that achieved scores greater than 7.0.

> grep _000 docking-log | awk ’{if ($2 > 7.0) print $1}’ | sed s/:// > hitlist
> sf-tools.exe mget docking-log-results.mol2 hitlist poses.mol2

This uses grep, awk, and sed in combination with the Tools module helper command mget to retrieve the top scoring
poses for each molecule in the hit list. Itis strongly recommended that users of the command-line BioPharmics Platform
tools obtain a working knowledge of Unix commands and scripting.

3.12 MISCELLANEOUS DOCKING COMMANDS AND ASSOCIATED OPTIONS

The following covers Surflex-Dock commands and options not discussed in detail above. Note that options that are
discussed very thinly are not recommended for user experimentation.

The protomol generation command mproto was used in the streptavidin, CDK?2, PDES, and thrombin docking
examples as well as the thymidine kinase and estrogen receptor virtual screening examples.

The -pgeom protocol was used in the streptavidin, CDK2, PDES, and thrombin docking examples. The -pscreen
and -pfast protocols were used in the thymidine kinase and estrogen receptor virtual screening examples. The
—-pquant protocol was used in the docking with a positional constraint example using thrombin.

All of the docking commands serve as wrappers for a single generalized docking protocol that can incorporate
multiple strategies for pose optimization. The exposed options listed above control some details of the search process as
well as the number of final conformers produces and the diversity of the final conformer set. Itis strongly recommended
to make use of the ~1match parameter to specify the poses of cognate ligands (these should be prepared as if they are
a target for eSim screening).

The -multiproc option makes it easy to split a large virtual screening run across multiple computing nodes. Note
that the Docking Module (by default) makes use of multiple computing cores. For large screening runs, better core
utilization can be obtained by running N parallel single-threaded jobs. Given 8 single-core processing nodes, one
would initiate runs as follows (each on a different node of a cluster or in parallel on a single 8-core computing node):

V V.V V V V VYV

sf-dock.exe -nthreads 1 -pscreen -multiproc 8 1 gdock_list Ligs.sfdb Targets logprocl
sf-dock.exe -nthreads 1 -pscreen -multiproc 8 2 gdock_list Ligs.sfdb Targets logproc2
sf-dock.exe -nthreads 1 -pscreen -multiproc 8 3 gdock_list Ligs.sfdb Targets logproc3
sf-dock.exe -nthreads 1 -pscreen -multiproc 8 4 gdock_list Ligs.sfdb Targets logproc4
sf-dock.exe -nthreads 1 -pscreen -multiproc 8 5 gdock_list Ligs.sfdb Targets logprocb
sf-dock.exe -nthreads 1 -pscreen -multiproc 8 5 gdock_list Ligs.sfdb Targets logprocé6
sf-dock.exe -nthreads 1 -pscreen -multiproc 8 7 gdock_list Ligs.sfdb Targets logproc7
sf-dock.exe -nthreads 1 -pscreen -multiproc 8 8 gdock_list Ligs.sfdb Targets logproc8

The final results will be contained in the union of the log and results files, which can be combined together for final
analyses.

Pose families should be produced in all cases when geometric docking predictions are desired. It is strongly
recommended to make use of pose hints from known bound ligands (making sure that they are in the coordinate frame
of the current docking run!). One can vary the size of the bins that contain different pose families (-rmsbin), the pose
family membership similarity level (-famdiff), and the probability threshold below which a pose family will not be
reported (-poseprob). The PDES example made use of the -~poseprob and —~rmsbin parameters.

The rms_list command will take a collection of conformers of a single molecule and will compare it (correcting
for internal symmetries) to the “correct” pose of the ligand.

A command for producing protein fingerprints has been added (dock_fp), whose syntax is as follows: sf-dock. exe
dock fp protein.mol2 ligands.mol2 <distance> outprefix. The specified single protein is used to stati-
cally score the ligand poses provided, with the protein atoms being included in the output fingerprints being within the
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specified distance of the first ligand pose. The output file is suitable for use in the similarity module’s iscreen_list
command.
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CHAPTER 4

SIMILARITY MODULE TECHNICAL MANUAL

As with docking, molecular similarity functions are implemented within a single program module. Beginning with
version 4.5, the Similarity Module has implemented the eSim approach to molecular similarity. The eSim 3D
similarity approach was introduced in mid-2019, with an extensive set of benchmarks for both virtual screening and
pose prediction, demonstrating superior performance to numerous alternative approaches [1, 2]. The eSim method itself
is an augmentation and refinement of the predecessor method Surflex-Sim, which has been extensively documented
[3-11].

The eSim method adds Coulombic electrostatic field comparison to the antecedent morphological similarity method
that prior versions implemented. One particular difference of notable importance is that pose optimization for molecular
similarity can be accomplished extremely quickly. Search speeds of roughly between 200-300 molecules per second
on a single computing core (nearly 25,000,000 molecules per day per core). The relevant screening options are
-pfast/f and -pscreen, described in detail below. A paper detailing performance of the eSim method has been
published concurrently with this release [1].

Preparation of ligand structures is critical to produce sensible and reliable results. Please refer to the Surflex-Tools
chapter for details on ligand preparation. All molecules must be prepared using the forcegen command prior to
processing with Surflex-Sim. Typical use cases for Surflex-Sim include elucidation of ligand binding modes and
virtual screening. Many aspects of the underlying technologies are incorporated into the Surflex-Dock and Surflex-
QuanSA modules. The specific use cases involving pure ligand-based molecular similarity will be addressed here.
Surflex-sim shares many command line parameters (both syntactically and semantically) with Surflex-Dock, and it is
recommended that users also make themselves familiar with that section of the manual. The discussion that follows
will address the features that are specific to Surflex-Sim.
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4.1 SURFLEX-SIM COMMAND LINE INTERFACE

Note that there may be minor variations between the figures shown in the manual and the precise results shown in
the software distribution. There are no statistically significant differences, but, for example, the Nt" ranked solution
indicated in the manual may correspond more closely to the (N-1)*% in the actual distribution. The variations are due
to small algorithmic changes across minor version increments as well as cross-platform and compiler differences.

BioPharmics Platform Version 5.193
> Usage: surflex-sim

<options> <command> args

OVERALL PARAMETER SELECTION CHOICES

-pfastf
-pfast
--> -pscreen

-pgeom
-pquant

-nthreads
-nbuffer

MUTUAL ALIGNMENT
mult_esim
-me_nmake
-me_rms
-me_known
-me_kthresh
-me_compress
-me_norm

Extremely fast screening parameter set
Fast screening

Fast/accurate screening [DEFAULT]

Pose accuracy

Higher pose accuracy

(36) Maximum number of threads to use
(200) Number of mols to buffer from SFDB

(HYPO) COMMANDS AND SPECIFIC OPTIONS:

namelist input.sfdb outprefix (use forcegen -pgeom/f or -pquant/f)

(10) Max number of cliques to make

(0.10) RMS for grouping final cliques

(none) Set of given poses to guide alignment

(4.00) eSim threshold against known poses

(var) Alignment compression level (varies based on option)
Turn OFF normalization of clique scores (default ON)

SIMILARITY COMMANDS:

esim input.sfdb targetlist_or_archive (= esim_list input.sfdb targ "esim"
esim_list input.sfdb targetlist_or_archive log
-min_output (--) Score below which to suppress output
-min_2way (== Two-way score below which to suppress output
-vrange (--) Volume range relative to query (e.g. -vrange 0.8 1.2)
-maxrot (200) Max number of rotatable bonds on which to operate
-nfinal (*) Number of final poses (varies depending on parameter scheme)
+two_way Also report two-way eSim score (default OFF)
-joint Turn OFF joint treatment of multi-ligand target (default ON)
-div_rms (0.25) RMS minimum difference of final poses
-win_prop (0.0000) If non-zero, return this proportion of best hits (e.g. 0.001)
-multiproc npc pnum Indicates NPC processor run, current processor is PNUM

esim_display
esim_static

diverse2d
-gsim_thresh
choose_ref
imprint
+im_one_way
iscreen_list
gsim
gsim_list
targprep

MOLECULE SEARCH/
-epolar
-esteric
-ecoul
-edonacc
-estrain
+exclude
-poscon

moll mol2 outprefix
moll mol2 outprefix

liglist div2dout nmols

(1.00) GSIM threshold to terminate getting new diverse mols.
mol-poses.mol2 mols.sfdb outprefix Nchoose
input.sfdb basis-set.mol2 outprefix
Use single-sided eSim scores for imprinting (default two-way)
imprint-subj imprint-targ outprefix

moll mol2
liglist targetlist 1log
InMols.{mol2/sdf} outprefix --> outprefix-targ.mol2 outprefix-log

Protonates if needed, charges, and validates eSim query

ALIGNMENT OPTIONS:
(1.00) Weighting of the Coulombic *and* donor/acceptor eSim terms
(1.00) Weighting of the steric eSim term
(1.00) Weighting of the Coulombic eSim term
(1.00) Weighting of the donor/acceptor eSim term
(0.05) Weighting of ligand strain
Turn ON out-of-target exclusion force (DEFAULT OFF)
<frags> Molecular fragments (multi-mol2 file) to constrain position
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-pospen (56.00) Penalty for deviating from specification (kcal per Angstrom~2)
-pwiggle (0.25) Amount of free wiggle with zero penalty (Angstroms)
-skipnonmatch Turn OFF skipping non-matches to -poscon arg (DEFAULT ON)

[-torcon must be applied using forcegen including penalty parameters]

MISC OPTIONS:
+sdf Produce tagged sdf output from esim_list (OFF)

All commands should be typed lower-case. Molecular output is generally in Sybyl mol2 format, though a transition
will occur to SDF. The required input file format in most cases is the Surflex-Tools SFDB compressed molecular
database format (suffix is “.sfdb”).

4.2 PRIMARY CHANGES IN CURRENT VERSION

General notes about the current version can be found in the Release Notes in the Foreword to this manual. Detailed
notes can be found here.

4.3 VIRTUAL SCREENING WITH ESIM

Virtual screening using molecular similarity can be very effective in identifying novel ligands that share specific
binding with the ligand or ligands used as the target of the screen. The eSim method may be used with a single
molecule as the “query” (or “target”), or it can be used with a joint overlay of multiple ligands. The syntax of the
command is the same.

4.3.1 Example 1: Carbonic Anhydrase

The primary command for virtual screening with Surflex-Sim is esim_1ist, illustrated as follows, with three variations
on the protocol, the first two employing a single molecular target, and the last involving a joint target comprised of
five molecules.

# Directory: examples/similarity/virtual_screening/cah?2

Preparation of the actives and decoys

Build 3D structures

sf-tools.exe fgen3d actives.smi actives
sf-tools.exe fgen3d decoys_sampled.smi decoys

vV VvV # #H

H*

Conformer search in the fastest screening mode
> sf-tools.exe -pfastf forcegen actives.mol2 pffact
> sf-tools.exe -pfastf forcegen decoys.mol2 pffdec

Combine actives and decoys into a single file:
> cat pffact.sfdb pffdec.sfdb > pffall.sfdb
# Key output file: pffall.sfdb

# Fastest 3D screening: -pfastf with ForceGen/pfastf conformers
sf-sim.exe -pfastf -nfinal 1 esim_list pffall.sfdb xtal-orig-charged.mol2 esimpf

v

# Generate ROC curve and statistics (for the -pfastf run):
> cat esimpf-log | grep act_000 | awk ’{print $2}’ > pos

> cat esimpf-log | grep dec_000 | awk ’{print $23}’ > neg

> sf-tools.exe roc pos neg rocpf

# Look at the virtual screening results

> pym disp-pfastf.pml

# More thorough 3D screening: -pscreen with ForceGen/pfastf conformers
> sf-sim.exe -pscreen -nfinal 1 esim_list pffall.sfdb xtal-orig-charged.mol2 esimps
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Virtual Screening using eSim and Carbonic Anhydrase

Screening Enrichment: -pfastf vs. -pscreen

[ Single Alignment Target
o L — g g g

0.8

0.6

0.5

True Positive Rate

0.4

0.3

0.2

0.1
eSim -pfastf (AUC = 0.87)
eSim -pscreen (AUC = 0.94) =
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Positive Rate

DUD-E Target/Query Example Active Predicted Pose

FiC g Q Q0
//\NH2 \O S s

P (e}
N
0 PUSss
(e}
CAH2
AUC (eSim -pfastf) ChEMBL331858
eSim 0.89 OPhrm 0.45 Score: 5.7

ROCS 0.51 VvAMS 0.44 Strain: +0.3
WEGA 0.44 USR 0.37 Decoy%: > 99.9

Figure 4.1  Virtual screening with eSim, using a particularly small carbonic anhydrase ligand as a target. Note that the target
molecule has partial charges assigned in order to allow for eSim Coulombic field comparison. The more thorough screening mode
-pscreen performed better than the -pfastf approach, though the latter yielded comparable early enrichment.

Generate ROC curve and statistics (for the -pscreen run):
cat esimps-log | grep act_000 | awk ’{print $2}’ > pos
cat esimps-log | grep dec_000 | awk ’{print $2}’ > neg
sf-tools.exe roc pos neg rocps

H*

Look at the virtual screening results
> pym disp-pscreen.pml

# KEY OUTPUT FILES:
esimpf-log esimpf-results.mol2
esimps-log esimps-results.mol2

H* H#

The fastest screening mode, using a single molecule as a target, yields single-core processing times of hundreds of
molecules per second. Figure 4.1 shows the performance of the -pfastf screening run and includes comparative
results for alternative approaches. Performance for eSim is characterized by very high early enrichment, with an
overall ROC area of 0.87 for the fastest screening mode. The eSim approach is not overly sensitive to size differences
between a query molecule and actives to be retrieved. However, most other ligand-based approaches have difficulty
in such cases, stemming from from inadequate alignment search and from the definition of their similarity functions.
Here, despite the size difference, the example active is shown in its predicted alignment, which correctly corresponds
the “warheads” of the carbonic anhydrase inhibitors.
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Virtual Screening using eSim and Carbonic Anhydrase

Screening Enrichment: Single- vs. Multi-Target Joint Crystallographic Alignment Target
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Figure4.2 An alternative to more thorough search using a single ligand as a molecular target, which is also usually more effective,
is to make use of a joint molecular target. Here, five typical carbonic anhydrase ligands were used, in their crystallographic poses.
Performance using the -pfastf setting separated active and inactive ligands very effectively.

There are three screening modes for eSim: -pfastf, -pfast, and -pscreen. Roughly speaking, using single-core
calculations, each step in thoroughness produces a five-fold decrease in speed. However, both the quality of predicted
poses as well as the quantitative performance in terms of screening enrichment improves. Figure 4.1 shows the ROC
curves for both the -pfastf and -pscreen modes, with the latter showing an improvement of 0.07 in ROC AUC.

Another approach to improve screening performance is to provide more information rather than to optimize more
carefully. This can be done by making use of a joint target of multiple ligands. Figure 4.2 shows the crystallographic
poses of five carbonic anhydrase ligands, which are much more typical than that see in Figure 4.1. The eSim approach
allows ligands being aligned to “pick and choose” parts of each ligand of a joint target. The syntax is the same as
when using a single target, and the processing time is generally sub-linear (i.e. using a 5 molecule joint target may
only double or triple processing time).

The output of the esim_1ist command is as follows:

I # Directory: examples/similarity/virtual_screening/cah2
# File Contents: esimpf-log (with nfinal set at the default 3)

3 CHEMBL331858-act: 37 atoms, 3 rot (284.2 vol): time 0.002
[CHEMBL331858-act_000: 5.740 pen -0.02 strain 0.33 ]

5 [CHEMBL331858-act_001: 5.685 pen -0.06 strain 1.30 ]
[CHEMBL331858-act_002: 5.681 pen -0.02 strain 0.36 ]

7 CHEMBL273599-act: 42 atoms, 5 rot (290.2 vol): time 0.002
[CHEMBL273599 -act_000: 5.141 pen -0.03 strain 0.55 ]

9 [CHEMBL273599 ~act_001: 5.141 pen -0.03 strain 0.55 ]
[CHEMBL273599 -~act_002: 5.122 pen 0.00 strain 0.00 ]

11 CHEMBL282157 -act: 19 atoms, 1 rot (151.4 vol): time 0.000
[CHEMBL282157 ~act_000: 6.179 pen -0.00 strain 0.05 ]

13 [CHEMBL282157 ~act_001: 6.179 pen -0.00 strain 0.05 ]
[CHEMBL282157 ~act_002: 6.155 pen 0.00 strain 0.00 ]

5 CHEMBL77402-act: 53 atoms, 6 rot (400.8 vol): time 0.002
[CHEMBL77402-act_000: 5.148 pen -0.06 strain 1.16 ]

17 [CHEMBL77402-act_001: 3.219 pen -0.06 strain 1.16 ]
[CHEMBL77402-act_002: 2.943 pen -0.02 strain 0.33 ]

19 CHEMBL304757 -act: 29 atoms, 4 rot (260.6 vol): time 0.004
[CHEMBL304757 ~act_000: 6.994 pen -0.02 strain 0.37 ]

21 [CHEMBL304757 ~act_001: 6.866 pen -0.03 strain 0.54 ]
[CHEMBL304757 ~act_002: 6.819 pen -0.08 strain 1.51 ]
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3 CHEMBL140110-act: 34 atoms, 4 rot (298.0 vol): time 0.005

[CHEMBL140110-act_000: 6.721 pen -0.29 strain 5.89 ]
[CHEMBL140110-act_001: 6.684 pen -0.02 strain 0.40 ]
[CHEMBL140110-act_002: 3.998 pen -0.02 strain 0.40 ]
CHEMBL487938 -act: 59 atoms, 6 rot (386.6 vol): time 0.003
[CHEMBL487938 -act_000: 6.420 pen -0.07 strain 1.41 ]
[CHEMBL487938 -act_001: 6.165 pen -0.18 strain 3.53 ]
[CHEMBL487938-act_002: 6.114 pen -0.08 strain 1.64 ]

For each molecule, the first line includes information about number of atoms, rotatable bonds, Van der Waals volume,
and run-time. For each pose, the similarity score is provided, the calculated penalty value, and the ligand strain,
measured in kcal/mol2 relative to the lowest energy conformer from the sf-tools/forcegen search. The molecule
CHEMBL331858, shown in Figure 4.1, has a score of 5.7, with a strain value of 0.33 kcal/mol2. The strain yields a
nominal penalty of -0.02 given that the ~estrain parameter is set to 0.05 by default. In practice, the default value of
-estrain yields low energy conformers; however, if yet lower energy solutions are desired, the parameter value can
be increased.

One other aspect is important to understand, having to do with cases where molecules being aligned may be of
significantly different size than the molecular target. Surflex-Sim uses “observer” points around a molecule’s surface
to compute similarity. In a screen, the target molecules have a single observer set that is used for all molecules to be
screened. So comparisons of molecule A to B will, in general, yield different numerical results than comparisons of
molecule B to A. For molecules of similar size, scores will tend to be close to one another, but as sizes begin to differ,
they will diverge. Our experience in extensive benchmarking has been that this asymmetrical metric, which gives the
degree to which a subject molecule is capable of mimicking the target but which allows for excursions, gives the best
results in most systems.

4.3.2 Example 2: PARP

The case of PARP presents a more typical case of enzyme inhibition, where highly specific features such as metal
chelation are not present. Here, using either single or multiple-ligand targets for virtual screening parallels the results
seen with carbonic anhydrase.

# Directory: examples/similarity/virtual_screening/parpl
# Preparation of the actives and decoys is done in RunPrep

> source RunPrep
# Key output file: pffall.sfdb

# Fastest 3D screening: -pfastf with ForceGen/pfastf conformers
sf-sim.exe -pfastf -nfinal 1 esim_list pffall.sfdb xtal-orig-charged.mol2 esimpf

v

# Generate ROC curve and statistics (for the -pfastf run):
> cat esimpf-log | grep act_000 | awk ’{print $2}’ > pos

> cat esimpf-log | grep dec_000 | awk ’{print $2}’ > neg
> sf-tools.exe roc pos neg rocpf

# Look at the virtual screening results

> pym disp-pfastf.pml

# Use a joint molecular target (five PARP inhibitors)
sf-sim.exe -pfastf -nfinal 1 esim_list pffall.sfdb xtal-alt.mol2 jesimpf

v

Generate ROC curve and statistics (for the joint target run):
cat jesimpf-log | grep act_000 | awk ’{print $2}’ > pos

cat jesimpf-log | grep dec_000 | awk ’{print $2}’ > neg
sf-tools.exe roc pos neg rocjpf

vV V VvV #

# Look at the virtual screening results
> pym disp-pfastf-joint.pml

# JOINT_TARGET -PSCREEN PARAMETER
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Virtual Screening using eSim and PARP1
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Figure 4.3  An alternative to more thorough search using a single ligand as a molecular target, which is also usually more
effective, is to make use of a joint molecular target. Here, five typical carbonic anhydrase ligands were used (top right), in their
crystallographic poses. Performance using the -pfastf setting separated active and inactive ligands more effectively than using a
single target (bottom).

sf-sim.exe -pscreen -nfinal 1 esim_list pffall.sfdb xtal-alt.mol2 jesimps
cat jesimps-log | grep act_000 | awk ’{print $2}’ > pos

cat jesimps-log | grep dec_000 | awk ’{print $2}’ > neg

sf-tools.exe roc pos neg rocjps

vV V. V Vv

KEY OUTPUT FILES:
esimpf-log esimpf-results.mol2
jesimpf-log jesimpf-results.mol2
jesimps-log jesimps-results.mol2

H H o H

Figure 4.3 shows the comparison between the screening performance under the three different conditions. Moving
from a single molecular target to a joint one, using the fastest screening setting, increased ROC area from 0.82 to 0.92.
For a slightly increased computational cost, using the second-fastest screening mode setting increased performance to
an AUC of 0.96, with a maximal early enrichment of over 300-fold.

4.4 POSE PREDICTION

The PARP example offers a good opportunity to demonstrate aspects of pose prediction. Over a very large number
of molecular targets, including nearly 400,000 predictions, eSim generally is able to produce a close-to-correct pose
within the top 20 returned under the -pgeom parameter regime. That performance level was established using a
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Pose Prediction using eSim and PARP1

Several-Dozen ChEMBL Molecules Joint Alignment Target

Figure 4.4 Using the -pgeom +exclude protocol, accurate predictions of molecular pose can be obtained using the same joint
target that was employed for virtual screening. At top, the first few dozen top-scoring pose predictions for actives are shown
(magenta) with the crystallographic poses of the joint target molecules (green). At bottom, six examples of accurate top-scoring
pose predictions for PARP inhibitors whose bound pose was known are shown (green for the experimental poses and cyan for the
prediction ones).

crystallographic pose of a target molecule and aligning a randomized version of subject molecule to it. Performance
to the very top scoring pose was close to 60% correct at the 2.0 Angstrom threshold.

Generally, the -pscreen parameter setting produces poses that comport with intuition and also frequently agree
with experiment. However, for accurate pose prediction, deeper conformational sampling is beneficial, using the
ForceGen -pgeom or -pquant settings. Also, using the correspondingly more thorough eSim settings (-pgeom or
-pquant) will produce more accurate and more detailed results. Note that, as above, one can mix and match different
levels of conformational sampling and alignment search depth. In addition, the +exclude option enforces a small
penalty in order to prefer poses that protrude as little as possible from the provided target (whether a single molecule
or a joint target).

# Directory: examples/similarity/virtual_screening/parpl
# Large-scale pose prediction: Keeping inside the target
# Prepared ligands using -pscreen, align: -pgeom +exclude

> sf-sim.exe +exclude -pgeom -nfinal 1 esim_list psact.sfdb xtal-alt.mol2 jesimpgact

# Look at the pose prediction results
> pym disp-posepred.pml
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Pose prediction for ligands with known bound configurations

Prepared ligands using -pgeom, align: -pgeom +exclude

sf-tools.exe -pgeom forcegen xtal-random.mol2 pg-xtal

sf-sim.exe +exclude -pgeom -nfinal 1 esim_list pg-xtal.sfdb xtal-alt.mol2 xtalpred

vV VvV # #

H*

Look at the pose prediction results
> pym disp-posepred-xtal.pml

# KEY OUTPUT FILES:
# jesimpgact-log jesimpgact-results.mol2
# xtalpred-log xtalpred-results.mol2

In the example above, a joint screening target is used to try to make reasonable predictions about the poses a large
number of known actives. The first run uses a thorough alignment search on molecules that were searched using a
ForceGen screening-level protocol, and the second uses a proper geometric search protocol for both conformer search
and eSim alignment. Figure 4.4 shows results of the screening-like protocol (top) and the thorough pose prediction
protocol (bottom). The screening poses clearly put the warhead variants in the correct place across the dozens of
ligands shown, and the “tails” fall into the near and far positions that are defined by the joint alignment target. The
six specific examples showing top-scoring poses compared with crystallographic ones are typical examples in this
case, where relatively rigid ligands are to be aligned and where a clear common binding motif is present. A formal
benchmark and analysis across a very large variety of targets and small molecules is presented in the eSim benchmark

paper [1].

4.5 MULTIPLE LIGAND ALIGNMENT

Multiple ligand alignment is a difficult problem, but the accuracy of eSim pose predictions combined with the speed of
the method provides an effective means. It may be the case that one has biophysical information that gives confidence
about the bound conformation of a ligand that could serve as a target for a similarity-based screen, for example from
X-ray crystallography. However, it often happens that no such information is available, in which case identifying
a reasonable notion of the bioactive pose is useful. Surflex-Sim’s hypothesis generation procedure offers a means
to produce a mutual alignment of two or more molecules that simultaneously maximizes similarity while minimize
the relative volume of the joint superimposition relative to the largest volume of a single ligand (see [4] for more
information).

4.5.1 Serotonin Example

The procedure works as follows, beginning with use of the Surflex-Tools forcegen command.

Directory: examples/similarity/multiple_alignment/serotonin
Contents of hypo-names:

mé4a

m8b

# Prep the ligands for the two-molecule hypothesis
> sf-tools.exe -pquant forcegen HypoMolList pgser

# Generate an alignment hypothesis.
> sf-sim.exe -pgeom mult_esim hypo-names pqgser.sfdb malign

Split the best multiple-alignment into separate files:
> sf-tools.exe splitmols malign-08.mol2 hmol

# Look at the different alignments
> pym disp.pml

# Generate a sim-stick display
> sf-sim.exe esim_display hmol-m4a.mol2 hmol-m8b.mol2 ser
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Figure 4.5 Bottom left: 2D chemical structures of m4a and m8b. Top: one multiple alignment of m4a (cyan carbons) and m8b
(magenta carbons) surrounded by 4 types of similarity sticks, steric (green), Coulombic (orange), H-bond donors (red), and H-bond
acceptors (blue). Bottom right: Plot of different ROC curves for different eSim 3D multiple alignments and a 2D GSIM screen.

# Look at the similarity display
» > pym ser-disp.pml

24 # KEY OUTPUT FILES:

# malign-*.mol2 All multiple ligand alignment hypotheses
26 # malign-log Log file with scores and strain values

# ser-donacc.mol2 Display of donor/acceptor similarity sticks
28 # ser-steric.mol2 Display of steric surface overlap

# ser-coul.mol2 Display of Coulombic similarity

The mult_esim command produces multiple ligand alignments based on the eSim method (mesim-*.mol2). The last
command above computes the static similarity of the final poses for the second hypothesis (after the hypothesis file
was manually split into the respective ligands).

The esim_display command produces a similarity display, as shown in Figure 4.5. These two competitive
serotonin ligands, despite the underlying difference in scaffolds, show a remarkably concordant surface, both with
respect to pure shape (small gray surface spheres), electrostatic field (larger blue-to-red spheres), and directional
hydrogen bonding preferences (blue and red sticks). The breaks in the surface concordance are minor, with “holes”
where the methoxy protrudes relative to the hydroxyl and where the nitrogen substituents do not come into perfect
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concordance. The protonated amines are both capable of making a salt-bridge with the same part of space, and
the oxygen atoms (one from a hydroxyl and one from a methoxy) similarly can accept hydrogen-bonding from the
potential donor region. A purely topological superimposition would favor exact concordance of the two matching pairs
of amino-tetralin substructures. However, by flipping molecule m8b and rotating it, the resulting alignment exhibits a
much higher degree of surface shape and polarity concordance.

It is important to understand that multiple ligand alignment is a challenging problem, both from a purely com-
putational aspect owing to a large search space, and also because it is not possible to know which parts of a set of
molecules are “important” and which are not. In a typical binding event, a part of a molecule will be making specific
and complementary contact with the protein, often with other parts exposed to solvent. Also, protein conformations
can vary significantly, so ligands may not be “seeing” the same target.

One way to assess the quality of multiple alignments is by using virtual screening. In this example, the top multiple
alignments were tested for screening effectiveness, as follows:

# Directory: examples/similarity/multiple_alignment/serotonin

Prepare the ligands for screening
> sf-tools.exe -pscreen forcegen TestMols.mol2 psser
> cat psser.sfdb ../../../docking/Zinc1000ps.sfdb > screen.sfdb

# eSim standard screening: -pscreen
> sf-sim.exe -pscreen esim_list screen.sfdb malign-00.mol2 pO0O

> sf-sim.exe -pscreen esim_list screen.sfdb malign-01.mol2 pO1

> sf-sim.exe -pscreen esim_list screen.sfdb malign-08.mol2 pO8

3 # GSIM screen

> sf-sim.exe gsim_list screen.sfdb malign-00.mol2 gsimlog

# Generate ROC analysis

# ROC curves and plot:

> echo ; echo ; echo HYPO-00

> grep -v ZINC p00-log | grep _000 | awk ’{print $2}’ > pos ; grep ZINC p00O-log | grep _000
| awk ’{print $2}’ > neg

> sf-tools.exe roc -ci 95 1000 pos neg rocpO00

> echo ; echo ; echo HYP0O-01

3 > grep -v ZINC pOl-log | grep _000 | awk ’{print $2}’ > pos ; grep ZINC pOil-log | grep _000

| awk ’{print $2}’ > neg
> sf-tools.exe roc -ci 95 1000 pos neg rocpOl

> echo ; echo ; echo HYP0-02

> grep -v ZINC p02-log | grep _000 | awk ’{print $2}’ > pos ; grep ZINC p0O2-log | grep _000
| awk ’{print $2}’ > neg

> sf-tools.exe roc -ci 95 1000 pos neg rocp02

> echo ; echo ; echo HYP0O-08

s > grep -v ZINC pO8-log | grep _000 | awk ’{print $2}’ > pos ; grep ZINC p08-log | grep _000

| awk ’{print $2}’ > neg
> sf-tools.exe roc -ci 95 1000 pos neg rocpO08

> grep -v ZINC gsimlog | awk ’{print $6}’ > pos ; grep ZINC gsimlog | awk ’{print $6}’ > neg
sf-tools.exe roc -ci 95 1000 pos neg rocgsim

v

# KEY OUTPUT FILES:

# pO*-log Screening scores for different alignments
# pO*-results.mol2 Predicted poses

# gsimlog GSIM 2D similarity scores

Here, the malign-08 is the best (violet curve in Figure 4.5), though all performed better than 2D similarity (blue
curve), especially with respect to early enrichment.
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Figure 4.6 Three alternative hypotheses for the relative alignment of four muscarinic antagonists.

4.5.2 Muscarinic Example

A more complicated example of multiple ligand alignment is given using the muscarinic receptor, where more
substantial ligand flexibility is present in the subject molecules [4]. Here, we will see that even producing mutual
alignments of four muscarinic antagonists produces multiple reasonable alternatives.

# Directory: examples/similarity/multiple_alignment/musc

# First prepare the ligands thoroughly
sf-tools.exe -pquant forcegen HypolList pqgmusc

# Now build a set of multiple hypotheses
sf-sim.exe -pgeom mult_esim hypo-namesl pqgmusc.sfdb hmuscl

Contents of hypo-namesl:
tolterodine

ad9

b1

qnb

H H O H H
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Look at some of the multiple ligand alignments
pym disp-hypos.pml

KEY OUTPUT FILES:
hmuscl-*.mol2 Alternative alignments
hmuscl-log Information about the alignment quality and ligand strain

The output log file provides information about each of the final ligand superimpositions (or “cliques”):

#
#

Directory: examples/similarity/multiple_alignment/musc
Contents of hmuscl-log:

Input mols in sorted order (high to low eSim from others):

Mol a49 mean score: 6.85

Mol tolterodine mean score: 6.13

Final hypo 00 prob: 0.4749

tolterodine strain: 4.2 kcal/mol
a49 strain: 3.0 kcal/mol
bl strain: 1.8 kcal/mol
qnb strain: 4.3 kcal/mol

Final hypo 01 prob: 0.462652 (min_rms = 1.70)

tolterodine strain: 5.2 kcal/mol
a49 strain: 2.5 kcal/mol
bl strain: 1.6 kcal/mol
qnb strain: 3.3 kcal/mol

Final hypo 05 prob: 0.395539 (min_rms = 0.83)

tolterodine strain: 5.8 kcal/mol
a49 strain: 1.7 kcal/mol
bl strain: 1.4 kcal/mol
qnb strain: 2.3 kcal/mol

Figure 4.6 shows three solutions with high probability and with relatively low strain (numbers 00, 01, and 05). None

has substantially different probability values, but the ligand energetics vary. As shown with the serotonin example,
using a virtual screening approach can help distinguish between different multiple alignments. Here, alignment 05
shows superior performance (see the script in the examples for details), and the eSim-based 3D screens perform better
than the GSIM 2D approach, as expected.

VvV o H

H OH B OH

It is possible to use a selected multiple ligand alignment to guide the construction of a larger one, as follows.

Directory: examples/similarity/multiple_alignment/musc

Let’s build a larger hypothesis de novo and also using a smaller
clique to seed it. We will use the one that worked best above. That
was hypo-05 (Version 4.511) based on early enrichment and overall
ROC area from the ROC plots --> defhypo.mol2

cp hmuscl1-05.mol2 defhypo.mol2
sf-sim.exe -pgeom mult_esim hypo-names2 pqmusc.sfdb hmusc2denovo

Here, in making use of the prior clique using the -me_known option,
we also choose to reduce the threshold for eSim similarity using the -me_kthresh
parameter so that all of the molecules will survive the cutoff.
sf-sim.exe -me_kthresh 1.0 -me_known defhypo.mol2 -pgeom
mult_esim hypo-names2 pgmusc.sfdb hmusc2given

Contents of hypo-names2:
tolterodine

a49

bl

atropine
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3 # qnb

# oxybutynin

# Look at some of the seeded multiple ligand alignments
> pym disp-hypos-seeded.pml

# KEY OUTPUT FILES:
# hmusc2denovo -*.mol2 Alternative alignments using no prior knowledge
# hmusc2given-*mol2 Alternative alignments using hmuscl-05 from above

Note that in many cases (as in the examples shown here), the overall multiple alignment probability score, which
is used in sorting the output, will not differ much. The scores reflect a combination of ligand mutual similarity,
volumetric concordance, and strain. In cases where there is no clear reason to prefer one of the several alternatives, as
can occur, we recommend empirical testing of the highest scoring cliques using new ligands. In many cases, other data
involving structure-activity variations will be useful in adjudicating between alternative mutual alignment hypotheses.
There will be situations where multiple equally plausible alternatives exist, and when that occurs, the recommended
approach is to make use of each alternative independently until it is possible to identify the best one using experimental
data.

The -me_kthresh parameter controls the level at which any of the molecules will be dropped from a multiple
alignment when the -me_known parameter is specified.

Fundamentally, the problem of multiple ligand alignment is more difficult than that of non-cognate ligand docking,
which itself can be very challenging. We recommend considering the top several multiple alignments for any serious
application, whether it be for virtual screening or for quantitative modeling.

4.5.3 BZR Example: Large-Scale Multiple Ligand Alignment

In the QuanSA module, facilities exist for fully automated large-scale multiple ligand alignment in the context of
SAR data. Within the Similarity module, such large-scale alignments can be explored, and they may be utilized for
downstream calculations such as re-scoring within a binding site or for guiding the building of a 3D-QSAR model
with QuanSA or another technique.

Figure 4.7 shows two multiple ligand alignments of GABA 4R ligands that are competitive at the benzodiazepine
binding site. The left-hand alignment made use of the fastest screening-mode conformational search along with the
fastest alignment settings. The right-hand alignment made using of deeper conformational search and slightly more
thorough alignment. Conformational search depth and alignment search depth may be mixed, depending on speed
and accuracy considerations. The alignments were generated as follows.

# Directory: examples/similarity/multiple_alignment/bzr

s # First, we will prep the BZR hypo mols for exploring a mutual alignment: -PSCREEN

# Then, will generate a multiple alignment of 4 molecules

# Randomize the input conformers (which will also charge the mols)
# bzr3d.mol2 is a multi-mol2 of 147 bzr ligands

# Get the small set for the hypothesis generation

> sf-tools.exe regen3d bzr3d.mol2 bzrall

> sf-tools.exe mget bzrall-random.mol2 BZRNames bzrhypo3d.mol2

> sf-tools.exe -pscreen forcegen bzrhypo3d.mol2 ps-bzr

> sf-sim.exe -pscreen mult_esim BZRNames ps-bzr.sfdb mesim-ps

# Look at the alignments

> pym disp-mesim-ps.pml

# Now, we will prep the BZR hypo mols for a very thorough mutual alignment: -PQUANT
# Then, will generate a thorough (-PQUANT) multiple alignment of 4 molecules

> sf-tools.exe -pquant forcegen bzrhypo3d.mol2 pq-bzr
> sf-sim.exe -pquant mult_esim BZRNames pg-bzr.sfdb mesim-pq
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Look at the alignments
pym disp-mesim-pq.pml

The thorough mult_esim run produced a number of plausible alternatives.
mesim-pq-02.mol2 copied to good-align.mol2.

This alignment is very similar to that which seeded a very predictive

BZR QuanSA model in the 2018 QuanSA paper. There are multiple such solutions.
cp mesim-pg-02.mol2 good-align.mol2

KEY OUTPUT FILES:
mesim-ps-*.mol2 Alignment with fast conformation and alignment search
mesim-pg-*.mol2 Alignment with thorough conformation and alignment search

Both alignments agree in terms of the correspondence of parts between the different scaffolds. However, the tightness
of the alignments is improved by the additional sampling in the second case. Mutual alignments such as those shown
in Figure 4.7 may be used to generate multiple ligand alignments of large numbers of molecules though to share a
binding site, as follows.

#
#
#
>

#
#
#
>

H*

Directory: examples/similarity/multiple_alignment/bzr

For maximal alignment accuracy, we will prep the full set of BZR
ligands using the deepest level of conformer search

sf-tools.exe -pquant forcegen bzrall-random.mol2 pg-bzrall

We can run 147 molecules quickly to consider the full SAR.

Align the full 147 molecule set and filter out

a few outliers (controlled by -min_output) for visualization.

sf-sim.exe -min_output 7.0 -nfinal 1 -pgeom esim_list pg-bzrall.sfdb good-align.mol2 quick

Look at the alignments

-pscreen conformers, -pscreen conformers,
-pfast alignment 00 -pgeom alignment 00
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Figure 4.7 Two slightly different alternative hypotheses for the relative alignment of four BZR ligands.
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> > pym disp-mesim-all.pml

# KEY OUTPUT FILES:
# quick-results.mol2 Top scoring alignment for each of 147 ligands

Figure 4.8 shows the results of the alignment procedure. At left, 137 of the total 147 ligands are shown. Note that
the underlying scaffolds are not right on top of one another; rather, they shift depending on the pendant functionality
present, considering each molecule on the basis of its overall surface and electrostatic characteristics. At right, 10 of
the ligands with greater side-chain variability are shown. In these cases, the scaffold alignments shift somewhat more
than at left, due to the size and diversity of substitutions, though none of these ligands display completely different
predicted binding modes.

4.6 MOLECULAR POSITIONAL AND CONFORMATIONAL CONSTRAINTS: -POSCON AND
-TORCON

As with Surflex-Dock, the Surflex-Sim module offers the ability to constrain either conformation or absolute alignment
position of ligand subfragments. In the case of Surflex-Sim, because it is used frequently to identify relative ligand
alignments, the conformational constraint is more often relevant. The syntax and behavior of these two options is the
same as with Surflex-Dock. Torsional constraints must be applied during conformational elaboration with ForceGen,
where the are embedded within the resulting SFDB (the strength of the constraints can be varied within Surflex-Sim).
Positional constraints can be imposed within Surflex-Sim. The default behavior is for ligands without matching
substructures to the specified positional constraint to be skipped, but this behavior can be suppressed by specifying
-skipnonmatch.

All but 10 of 147 aligned BZR The remaining 10 of 147 aligned
ligands to the four molecule BZR ligands to the four molecule
—pgeom alignment —pgeom alignment

Figure 4.8 Complete alignments of 147 molecules to the right-hand alignment from Figure 4.7.
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In cases where very flexible molecules are to be aligned, especially in large numbers and when a good deal of

substituent diversity exists, use of torsional constraints is beneficial. Figure 4.9 shows such an example, generated as

follows.

# Directory: examples/similarity/multiple_alignment/bzr

# Produce 3D from SMILES, -pquant conformers

# Then produce -pquant mult_esim alignment for the two truncated NK ligands

> sf-tools.exe fgen3d nk-scaff.smi nkscaff3d

> sf-tools.exe -pquant +racemize forcegen nkscaff3d.mol2 pg-nkscaff

> sf-sim.exe -pquant mult_esim ScaffNames pgq-nkscaff.sfdb mesim-scaff

# The alignment mesim-scaff-02.mol2 is shown in the Figure.

# To make this into a torsional constraint file,

# hydrogen atoms are deleted along with some pendant functionality

# --> nkscaff-torcon-linkers.mol2

# Then, the conformer ensembles for four NK2 ligands (NKHypo.smi)

# are produced, using the torsional constraint from above.

> sf-tools.exe +reprot -torcon nkscaff-torcon-linkers.mol2 fgen3d NKHypo.smi nkhypotc
> sf-tools.exe -torcon nkscaff-torcon-linkers.mol2 -pgeom forcegen nkhypotc.mol2 pgnktc

H H o H R

KEY FILES:
nk-scaff.smi Two SMILES structures for NK ligand scaffolds
mesim-scaff -*.mol2 Alternative mutual alignments of the scaffolds
nkscaff -torcon-linkers.mol2 Linkers for the amide and ether scaffolds
NKHypo .smi Four SMILES structures for active NK ligands

Alignment of truncated Linker subfragments for
NK2 inhibitors torsional constraints

Figure 4.9 Two potent NK2 ligands are shown at bottom. The right-hand substituent of each was trimmed and made into a
piperidine in order to produce a mutual alignment that addressed the question of how the ether and amide linkers might be related.
At right, the linkers from the mutual alignment are shown and can be used directly as the argument of the —torcon switch within
the SF-Tools/ForceGen command.
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# pgnktc.sfdb SFDB of the torsionally constrained NK ligands

Here, a maximally thorough multiple ligand alignment was carried out, using -pquant level search for both the
conformations and alignments of the truncated NK2 ligands. The top left alignment shows edge-to-face intramolecular
phenyl arrangements for both the ether and amide scaffolds along with tight correspondence of the right-hand substituent
in common. The linkers were then made by manual deletion of extraneous atoms from the resulting alignment. The
resulting mol2 file containing two molecular subfragments was used to conformationally constrain four, larger active
NK?2 ligands, resulting in a detailed exploration of the remaining functionality on their scaffolds.

A multiple ligand alignment was carried out using the torsional constraints. One of the resulting alignments was
used as the target for a full series of 176 NK2 ligands, as follows.

# Directory: examples/similarity/multiple_alignment/bzr
# Now, we will generate the multiple alignment with the torsional constraint
> sf-sim.exe -pgeom mult_esim NKNames pgnktc.sfdb mesim-tc

# The previous step produces several good alignments, copied mesim-tc-00.mol2 to
good-align.mol2

# Now, we will generate 3D for all of the NK2 mols with torsional constraints

> sf-tools.exe +reprot -torcon nkscaff-torcon-linkers.mol2 fgen3d Neurokinin2model.smi
nkalltc

# time sf-tools.exe -torcon nkscaff-torcon-linkers.mol2 -pgeom forcegen nkalltc.mol2
pgnkalltc

# The following full alignment takes about 10 seconds
> sf-sim.exe -nfinal 1 -pgeom +exclude esim_list pgnkalltc.sfdb good-align.mol2 quick

# KEY FILES:
# mesim-tc-*.mol2 Constrained alignments for four NK2 actives
# quick-results.mol2 One pose each for 176 NK2 ligands

Figure 4.10 shows the the multiple ligand alignment (left) and the superimposition of all but a few of the 176 molecules
in the series (right). As with the BZR example, the NK2 scaffolds are seen to shift slightly in order to accommodate
their substituents. In this case, nearly all of the activity variation among the inhibitors is caused by variations at the
right-hand side, where a good deal of variability was explored with chemical variation.

Multiple alignment of 4 torsionally Alignment of all but a handful of
constrained NK2 ligands 176 NK2 ligands

Figure 4.10 Complete alignments of 147 molecules to the -pgeom quality alignment from Figure 4.7.
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4.7 OFF-TARGET PREDICTION: LOG-ODDS COMPUTATIONS

The prior set-based calculations of similarity in Version 4.411 are not currently available. With the replacement of
morphological similarity by the eSim approach, a re-calibration of the probability normalization method is required.
Replacement of the functionality with a much faster eSim-based approach will be done in the version 6.0 release.
Users that require the logodds methods may use Version 4.411, though it is no longer supported.

4.8 SCREENING LARGE COMPOUND DATABASES

Similarity-based virtual screening of large databases has become a routine practice in computational chemistry
workflows. Here, we show a quick example using a 1/100th subsampled Enamine Stock collection containing roughly
37,000 molecules. The esim_1ist command was used with both the -win_prop parameter (limits the number of hits
to a proportion, here the top 1/1000) and the -vrange parameter (limit the hits to a volume range, here between 0.8
and 1.2 times the volume of the target molecule). It is recommended to use the fastest screening setting (-pfastf) for
exploration of parameters on subsets of large databases. Screening enrichment will be very high with the -pfastf
setting, and that can be used when time is a very significant factor. However, the -pfast or -pscreen settings will
produce higher enrichment of actives.

# Directory: examples/similarity/virtual_screening/large_sfdb

3 # We make use of the PARP example here to show how to efficiently screen large databases

”
H*

)
H*+ O H B R

+*

We have downloaded a 1/100th subsample of the Enamine Stock Collection SFDB:
https://optibrium.com/community-downloads/7active_filter=virtual -screening

When screening large databases, one typically prefers

to avoid storing final poses and scores for poor-scoring
molecules. The Similarity module provides a means to
automatically identify and set a threshold such that
only the top-scoring hits are retained, as follows:

3 time sf-sim.exe -vrange 0.8 1.2 -nfinal 1 -win_prop 0.001 -pfastf esim_list

Enamine -03-2023-Hundredth.sfdb xtal-1lig.mol2 enaml00fast

s # NOTE: Here, we also specified a volume range

# for matching compounds of 0.8 to 1.2 in proportion to the target

7 # along with a single final pose.

# Screening as above, but with the -pscreen setting

# required about 3 minutes on a 36-core workstation:

time sf-sim.exe -vrange 0.8 1.2 -nfinal 1 -win_prop 0.001 -pscreen esim_list
Enamine -03-2023-Hundredth.sfdb xtal-1lig.mol2 enaml0Ops

In this example, using both the ~win_prop and -vrange parameters, the fastest search mode -pfastf yielded
36 hits in about 0.5 minutes on a Dell XPS15 laptop, which means that the full Enamine stock collection could
be screened in under an hour using -pfastf. The same search using the -pscreen search mode required about
3 minutes on a 36-core workstation. So, running on the more thorough -pscreen search mode would take just a
few hours for the entire Enamine stock collection. Given the cost of obtaining, assaying, and QC’ing experimental
results, the higher-quality results from the —-pscreen approach will generally be worth the relatively minor additional
computational cost.

4.9 REFERENCE SETS AND MOLECULAR IMPRINTS

With version 5.142, the use of molecular similarity to produce vector-based indexes of molecular structure (called
molecular imprints) has been recalibrated using the new eSim methodology. Much faster and more effective vector-
based methods are now available. The commands are illustrated with the PARP example seen earlier, as follows.
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# Directory: examples/similarity/virtual_screening/parpl
# See RunImprint script

# Copy the provided 20-molecule basis set
cp ../../../../bin/data/basis20.mol2

# Conformer search in screening mode for decoys (actives done before)
sf-tools.exe -pscreen forcegen decoys.mol2 psdec ; cat psact.sfdb psdec.sfdb > psall.sfdb

# Calculate molecular imprints for the decoys and actives

sf-sim.exe -pscreen imprint psall.sfdb basis20.mol2 all-im

# Calculate molecular imprints for the multi-ligand target
sf-tools.exe -pscreen forcegen xtal-alt.mol2 ps-xtal-alt

sf-sim.exe -pscreen imprint ps-xtal-alt.sfdb basis20.mol2 xtal-alt-im

# Use iscreen_list to screen the active/decoy imprints against the target imprints
sf-sim.exe iscreen_list all-im xtal-alt-im imprint_screen

# We get just an 0K ROC area (0.62) using the 20-molecule generic basis set
cat imprint_screen | grep act: | awk ’{print $4}’ > pos

cat imprint_screen | grep -v act: | awk ’{print $4}’ > neg

sf-tools.exe roc pos neg rocim20

# Use crystal-structure ligands to choose a PARP-specific basis set

# Prefer -pgeom prep and eSim for choosing reference sets
sf-tools.exe -pgeom forcegen xtal-all-ligs.mol2 pgxtal

sf-sim.exe -pgeom choose_ref xtal-all-ligs.mol2 pgxtal.sfdb imparp 10

# KEY OUTPUT FILES (from choose_ref command):
# imparp-mols.mol2 The 10 chosen diverse PARP ligands

sf-sim.exe -pscreen imprint psall.sfdb imparp-mols.mol2 all-imparp
sf-sim.exe -pscreen imprint ps-xtal-alt.sfdb imparp-mols.mol2 xtal-alt-imparp
sf-sim.exe iscreen_list all-imparp xtal-alt-imparp imprint_screen_parp

# We get a much better ROC area (0.83) by using more directly relevant molecules
cat imprint_screen_parp | grep act: | awk ’{print $4}’ > pos

cat imprint_screen_parp | grep -v act: | awk ’{print $43}’ > neg

sf-tools.exe roc pos neg rocimlOcustom

# Copy the provided 200-molecule basis set

cp ../../../../bin/data/pdbbind200.mol2

sf-sim.exe -pscreen imprint psall.sfdb pdbbind200.mol2 all-im200

sf-sim.exe -pscreen imprint ps-xtal-alt.sfdb pdbbind200.mol2 xtal-alt-im200

sf-sim.exe iscreen_list all-im200 xtal-alt-im200 imprint_screen200

# We get an equally good ROC area (0.83) by using a larger agnostic set (200 PDBBind
molecules)

cat imprint_screen200 | grep act: | awk ’{print $4}’ > pos

cat imprint_screen200 | grep -v act: | awk ’{print $4}’ > neg

sf-tools.exe roc pos neg rocim200

For additional discussion of the theory and application of molecular imprints, please refer to these studies [5, 7, 9, 12,
13].

4.10 MISCELLANEOUS SIMILARITY COMMANDS AND ASSOCIATED OPTIONS

The following covers Surflex-Sim commands and options not discussed in detail above (or in the previous chapter).
Note that options that are discussed very thinly are not recommended for user experimentation.

Building hypotheses for multiple ligand alignments was covered in detail in the foregoing. Control of the process is
governed by the listed parameters: -me_nmake controls the maximum total number of separate full alignment cliques
to generate; —me_rms controls the RMS threshold on identity in grouping cliques; and -me_known offers a means to
provide poses for a subset of the molecules in the desired clique (the closeness to which is governed by -me_kthresh).



BIBLIOGRAPHY 81

The -names option offers a means to restrict molecules to be aligned to a subset within an SFDB; -min_output
is a threshold, below which a molecule’s results in a virtual screen will be suppressed; —vrange is a relative Van der
Waals volume compared to the given query of subject molecules to consider, which can be useful in skipping large
numbers of database ligands with very different size than desired; -maxrot sets a threshold above which database
ligands will be skipped; and —div_rms is a threshold on the degree of difference between final poses.

The diverse2d allows selection of a diverse subset of molecules from the given SFDB or ligand pathname list.
The gsim and gsim_1ist command use 2D graph-based similarity to provide analogous functionality to esim_1ist
except using a 2D molecular similarity method.

Though not recommended, the weighting of the different aspects of the eSim similarity function can be altered
using the -epolar, -esteric, —ecoul, -edonacc parameters. The weighting of the ligand strain term can be
modified using -estrain. Also, imposition of a penalty for extending a subject ligand outside of a query is done
using +exclude.
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CHAPTER 5

REAL-SPACE LIGAND REFINEMENT (XGEN) MODULE
TECHNICAL MANUAL

Real-space refinement of ligands within the electron density of protein-ligand complexes offers a means to quantita-
tively explore the conformational ensembles that give rise to the snapshots that are captured in diffraction experiments.
The semantics of the xGen module mirror some aspects of the Tools module and the Docking module. In general, it is
expected that users of xGen will have access to both of those modules, though many aspects of real-space refinement
can be carried out within the xGen module independently.

NOTE: The current implementation of the xGen tool set requires a means to extract real-space electron density from
diffraction data. In order to make the tools accessible to non-crystallographers, the current means to do this makes use
of PyMOL, which is widely available to researchers. A future revision of xGen may include direct reading of MTZ
files, which will obviate the need for either PyMOL or special-purpose crystallographic software to obtain real-space
density. Note also that the Advanced Applications chapter shows how to use a prototype PyYMOL GUI rather than the
command-line interface described here.

It is strongly recommended that users read the extensive paper [1] that introduced the xGen method prior to reading
this chapter or making use of the xGen tools. The prior work introducing ForceGen is also recommended [2, 3], as is
the more recent work involving explicit modeling of bound ligand strain [4, 5].

5.1 SURFLEX-XGEN COMMAND LINE INTERFACE

Note that there may be minor variations between the figures shown in the manual and the precise results shown in
the software distribution. There are no statistically significant differences, but, for example, the N*" ranked solution
indicated in the manual may correspond more closely to the (N-1)%¢ in the actual distribution. The variations are due
to small algorithmic changes across minor version increments as well as cross-platform and compiler differences.

This is the command-line help listing of Surflex-xGen:
BioPharmics Platform Version 5.193

BioPharmics Platform Manual. By the Documentation Technical Team 83
Copyright (©) 2024 BioPharmics LLC
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Usage: surflex-xgen <options> <command> args

[xGEN PARAMETER SELECTION CHOICES]

-pstrict
-pdiverse
-pvstrict
-pvdiverse

Strict xGen

ensembles [DEFAULT]

Diverse xGen ensembles

Very strict
Very divers

xGen ensembles
e xGen ensembles

[LIGAND SEARCH DEPTH SELECTION CHOICES]

-pgeom
-pscreen

-pfast
-pquant

Deeper ring
Screening p
Screening p
Deep ring+c

[XRAY DENSITY COMMANDS]

dbox
-xg_dcarve
build
+-xg_denovo
+-xg_scope
-xg_carve
-Xg_res
+-xg_contour
refine
fit
-Xg_win
-Xg_rms
-xg_nfinal
regen
expand
-Xg_pen
-xg_wiggle
-xg_en
-Xg_pct
-Xg_srms
ensemble
-Xg_rsr_win
-Xg_nopt
-xg_clip
-xg_pcrash
+-xg_contour

raw-dbox.pd
(5.00)
scope-lig.m

(0.50)
)

xgen_densit
xgen_densit
(40.0)
(0.25)
(100)
xgen_dens
xgen_dens
(1.0)
(0.2)
(3.00)
(0.100)
(0.650)
xgen_dens
(0.500)
(100)
(0.10)
(-0.20)

search + macrocycles, max 250

arameter set, variable max 50/120

arameter set, max 50

onformer search including macrocycles, max 1000 [DEFAULT]

b scope-1lig.mol2 X-ray-res-file outprefix

Carve from scope-lig

0l2 protein.mol2 density-prefix outprefix

Pure de novo Gaussian sphere generation [default: OFF]

Use ligand to scope the binding site [default: ON]

Carve density further than this from scope-lig

X-ray res.: [default: read from <density-prefix>-resolution]
Turn on/off generation of isosurface contours (default: OFF)
y approx_lig.mol2 outprefix

y inmol.sfdb outprefix

Energy window for output conformers

Final RMSD difference for output conformers

Number of final conformers

ity_constrained approx_lig.mol2 outprefix

ity refined.sfdb approx_lig.mol2 outprefix

Force to remain close to refined conf

Wiggle for -xg_pen

Energy above refined pool min for final pools

Percentage of best density fit for final pools

sRMSD threshold to use for neighborhood building

ity density-prefix protein.mol2 scope.mol2 pool.mol2 outpfx
Single-conf RSR window

Max number of confs for ensemble optimization

Occupancy clipping threshold

Threshold of protein interpenetration to allow

Turn on/off generation of isosurface contours (default: OFF)

eval occ-list ensemble.mol2 protein.mol2 scope.mol2 prtn.pdb density-pfx outpfx

+-xg_contour

[MISCELLANEQUS COMMANDS]

extract_sfdb
rms_conflist
get

mget

mgetnum
mergemols
rms

input.sfdb
inmol2archi
mol2archive
mol2archive
mol2archive
mol2archive
moll mol2

Turn on/off generation of isosurface contours (default: OFF)

outprefix
ve.mol2 goldmol2archive.mol2 out-prefix
molname outmolname
molnamelist outmolarchive
molnumberlist outmolarchive
outprefix [merges all mols in archive into a single moll]

All commands should be typed lower-case. The xGen module is intended for use as part of the overall integrated
BioPharmics Platform, particularly with the Tools and Docking modules. However, ligand refinement beginning from
a pre-existing approximate placement can be performed within the xGen standalone module.

5.2 PRIMARY CHANGES IN CURRENT VERSION

General notes about the current version can be found in the Release Notes in the Foreword to this manual. Detailed
notes can be found here.


https://optibrium.com/BioPharmics/Release-Notes
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u =N (

Deposited coordinates with experimental contours
D

Thin slice of electron density map Thin slice of idealized function D(x,y,z)

Figure 5.1 Transformation of crystallographic experimental density into a spherical Gaussian approximation. (A) 3DV1 protein,
with bound ligand colored by B-factors, showing three experimental electron density contours from the 2|F,| — |F.| map (shown
at 2.0o (red), 1.50 (green) and 1.00 (blue)). (B) The derived idealized density function D(z,y, z) has roughly the same number of
Gaussian centers as ligand atoms (small tan spheres), and the parameters of the function are set to produce density values close to
experimental (isosurface contours are shown for D(z, y, z)). (C) A thin section in the X-Y plane of the ligand coordinates and the
three experimental density contours. (D) The corresponding thin X-Y section of the idealized function D(z,y, z), the positions of
the spherical Gaussian centers, and the isosurface contour points for the idealized function.

5.3 BRIEF SUMMARY OF REFINEMENT STEPS

The algorithms are detailed in the above-referenced paper. The steps for refinement will be briefly summarized here:

1. Idealized density: Experimental density is converted into a spherical Gaussian approximation for the region of
space that includes the reference ligand’s Van der Waals volume plus a buffer zone of 0.5A.

2. Restrained conformational search: The normal ForceGen conformational search procedure is carried out begin-
ning with the ligand’s reference coordinates. The MMFF94sf force field is augmented with a reward for overlap

between the ligand’s density function L(x, y, z) and the idealized experimental density D(z,y, z) (see Figures
5.1 and 5.2).



86

REAL-SPACE LIGAND REFINEMENT (XGEN) MODULE TECHNICAL MANUAL

Full xGen conformer pool with A single conformer trio Final occupancy-weighted
idealized D(x,y,z) contours conformer ensemble

Figure 5.2 Conformational search and ensemble derivation. (A) All conformers resulting from a restrained search of the 3DV1
ligand blending MMFF94sf energetics with a spherical overlap integral reward for matching the idealized density. (B) A single
high-quality conformer trio, representing both good density fit (orange) and low energy (yellow) along with a bridging central
conformer (slate). (C) An occupancy-weighted conformer ensemble with the 1.00 experimental density contour (gray mesh) and
corresponding calculated real-space density (pcaqic) contour (cyan dots).

3. High-quality trio generation: Each conformer resulting from the search is re-minimized: a) under a condition in

which the density overlap is strongly weighted; and b) with no density overlap reward but with a square-welled
quadratic positional restraint. The three pools of conformers (high density weighting, blended weighting from
the thorough conformer search, and minimized under positional constraint) are used to find high-quality trios
that are characterized by high congruence to electron density and by low energy.

. Ensemble generation: Conformers from the trios are used to construct occupancy-weighted ensembles that min-

imize real-space R. Calculations are done using L(z, y, z) for real-space electron density (the fast approximation
t0 peaie) and using the full experimental density sampled on a 0.25A grid.

. Fit evaluation: Final statistics for real-space correlation coefficient and real-space R (RSCC and RSR, see

Experimental Section) are made by comparing the 0.25A grid-sampled experimental density to the density
derived from the ligand (or ligand ensemble). For PDB reference ligand coordinates, this is done using exact,
as-deposited, atom-specific B-factors, the resolution of the diffraction data, and the standard truncated Fourier
approach with fitted scattering factor functions for p.4;.. For xGen ensembles, the same procedure is followed,
except that a constant, grossly estimated, B-factor is used for all atoms of all conformers within an ensemble
(B-factor optimization does not enter into any aspect of deriving an xGen ensemble).

The entire procedure is fully automatic and required just a few minutes per example, even for macrocycles, beginning
with extracting electron density information from the PDB structure and reflection data files and ending with final
conformer ensemble evaluation.



16

26

o

REAL-SPACE LIGAND REFINEMENT 87

5.4 REAL-SPACE LIGAND REFINEMENT

5.4.1

Extracting the Real-Space X-Ray Density

The steps for ligand refinement begin with building a density approximation from real-space density that has been
extracted from a crystallographic MTZ map file. The current method (soon to be replaced) for extracting density
makes use of PyMol, as follows:

#

#

#
#
#

Directory: examples/xgen/refine/

PyMol Script File: BuildAllMesh.pml

load protein.mol2

load lig-orig.mol2

remove (hydro)

load pdbmap.mtz
map_double phases.2fofc,
select ligand, lig-orig
isomesh map, phases.2fofc
dump meshb50.txt, map
isomesh map, phases.2fofc
dump mesh49.txt, map

isomesh map, phases.2fofc
dump mesh-01.txt, map

quit

-1

>

>

>

5.0, ligand, carve=5.0

4.9, ligand, carve=5.0

-0.1, ligand, carve=5.0

Directory: examples/xgen/refine/test3dvl

pymol ../BuildAllMesh.pml

KEY OUTPUT FILES:

meshx*. txt Set of mesh contour files from 5.0 to -5.0 sigma
in steps of 0.1

This procedure takes just seconds on typical desktop workstations and takes slightly longer on a laptop. The resulting
very fine-grained sets of 3D points at the different contour levels are used to construct a full 0.25A grid of real-space
density, as follows:

#
#

vV V. V Vv

H OH H O OH

Directory: examples/xgen/refine/test3dvil/
See examples/xgen/refine/RunXgen-Build

source ../MakeDensity

gunzip -f raw_density_box.pdb.gz
sf-xgen.exe dbox raw_density_box.pdb lig-orig.mol2 pdb-res density

gzip -f raw_demnsity_box.pdb

KEY OUTPUT FILES:
density-resolution
density-clist
density-mesh-[012345]
density_dpts.mol2
density_contour.mol2

The specified resolution of the X-ray data

The file spec for input to xgen_build

Data for building the idealized density

Visualizable density grid (color by partial charge)
Visualizable density contours (color by partial charge)

A number of files are produced, all prefixed as specified (here “density”). These are used in all subsequent refinement
steps.

5.4.2 Building the Real-Space Idealized Density Approximation

Part of the computational complexity of prior real-space refinement methods stemmed from using a grid-based
representation of the X-ray density. The xGen approach is to construct an idealized approximation, composed of
spherical Gaussian functions, as follows:
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# Directory: examples/xgen/refine/test3dvl

# The build command builds the Gaussian spherical density approximation
> sf-xgen.exe build lig-orig.mol2 protein.mol2 density xg

# KEY OUTPUT FILES:

# xg-ligfit Spherical Gaussian specification

# xg-constraint Spherical Gaussian specification + positional constraints

# xg-exptl*.mol2 Experimental density contour dots (color by partial charge)
# xg-fit*.mol2 Idealized density contour dots (color by partial charge)

The contour files may be visualized in order to see the concordance of the experimental and idealized density functions.
These contours are also useful in visualizing the output ligand ensembles from xGen ligand refinement and fitting
procedures.

5.4.3 Ligand Refinement

Refinement of an approximate ligand pose combines the standard ForceGen conformer search procedure with the
restraints that were constructed in the foregoing. The xGen module implements the algorithm, along with the
conformer expansion described above, as follows:

# Directory: examples/xgen/refine/test3dvi

# Use the density constraint from xgen_build to produce better xtal ligand possibilities
> sf-xgen.exe -pquant refine xg-ligfit lig.mol2 xgref

# Expand the initial balanced conformer pool, then ensembles can be built
> sf-xgen.exe expand xg-ligfit xgref.sfdb lig-orig.mol2 xgref-prof

# KEY OUTPUT FILES:

# xgref .sfdb The full conformer pool from refinement

# xgref -prof -best -density.mol2 Density-weighted conformers from high-quality trios

# xgref -prof -best-center .mol2 Balanced conformers from high-quality trios

# xgref -prof -best-min.mol2 Constrained minimized conformers from high-quality trios
# xgref -prof -confreport Detailed per-conformer report

# xgref -prof-log Log file from conformer expansion

The refine command produces an SFDB conformer database file, which is then used as input to the expand
command. The expand command is related to the profile command from the Tools module, and the conformer
report file contains the following columns:

Cnum: The number of the conformer in the output sfdb (sorted based on blended energy)

. Energy: MMFF94sf energy (without density overlap reward)

. E+EViol: MMFF94sf energy plus density overlap reward

. EViol: Total density overlap reward

BlendScore: Normalized value of the density overlap integral (maximal values will be close to 1.0).
. HighRMS: Density-weighted conformer RMSD from input 1ig-orig.mol2

. HighScore: Overlap score for density-weighted conformer

CminRMS: RMSD from original ligand for the constrained minimized conformer

T R < Y N N

CminScore: Overlap score for the constrained minimized conformer
CminEn: MMFF94sf energy for the constrained minimized conformer
11. NeighRMS: Scaled RMSD for the neighborhood that the trio for this row represents

,_.
e

Consideration of the conformer report is not generally necessary for a typical case. However, users that want to
visualize each of the expanded conformer trios sequentially may wish to see the detailed scores and deviations.

Options for the expand command affect the degree to which the high-quality conformer trios that are produce have
particularly high density overlap scores or particularly low energy. The parameters are as follows:
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1. -xg_pen: In the constrained minimization, this is the force to remain close to the blended conformer (in
kcal/mol/Angstrom?)

2. -xg_wiggle: In the constrained minimization, this is the amount of free wiggle to allow each atom (Angstroms)

3. -xg_en: Initial energy window for high-quality trio generation, which will be increased if no trios are found

4. -xg_pct: Percentage below the maximum density overlap for high-quality trios. Increasing this value will
allow for less perfect fits to X-ray density to become part of the output high-quality trios.

5. -xg_srms: Threshold on the neighborhood size for the output trios. The default value of 0.65A has been found
to keep the conformers within the trios close enough to one-another that the set can be treated as part of a
closely-related manifold of poses.

Extensive testing has not been done with these parameters.

5.4.4 Generating Conformer Ensembles and Evaluating Them

The central goal of the xGen refinement procedure is to replace a single conformer with optimized atom-specific
B-factors (the input approximate ligand pose) with a conformer ensemble that makes use of a constant B-factor for the
entire ensemble. The final step takes a pool of conformers and identifies the ensemble that minimizes a fast calculation
of real-space R:

I # Directory: examples/xgen/refine/test3dvl
3 > sf-xgen.exe +xg_contour -pstrict

ensemble xg-ligfit density protein.mol2 lig-orig.mol2
xgref -prof -best-density.mol2 xgensemble

# Required command-line parameters:

# density restraints: xg-ligfit
9 # density prefix: density

# protein: protein.mol2
1no# scope-lig: lig-orig.mol2

# input pool: xgref -prof -best-density.mol2
13 # output prefix: xgensemble

15 # KEY OUTPUT FILES:

# xgensemble -confs.mol2 xGen strict ensemble
17 # xgensemble -occ Occupancies for the conformers (one per line)

# xgensemble-is010.mol2 Equivalent 1.0 sigma contour (if +xg_contour was specified)
19 # xgensemble-iso01.mol2 Equivalent 0.1 sigma contour (if +xg_contour was specified)

The density prefix is required in order to access the original real-space density grid values, which are used in ensemble
optimization. The protein structure is used to subtract the density attributable to protein atoms and to identify
conformers within the input pool that clash with protein atoms.

The scope ligand is used to identify the spatial volume of density to be considered during the ensemble generation
process. This may be, for example (as above), the original approximate ligand pose. However, it may also be a
multi-mol?2 file that identifies a (typically larger) volume. For example, one can specify the same argument as the
scope ligand and input pool, which will have the effect of the xGen pool generation and expansion self-defining the
scope of the final ensemble. Overall parameter set choices that affect ensemble generation are as follows:

e -pstrict: Selects a strict set of parameters for ensemble generation.

e -pdiverse: Selects parameters for more diverse ensemble generation.
e -pvstrict: Selects very strict parameters.

e -pvdiverse: Selects parameters for very diverse ensemble generation.

Specific individual parameters:
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e -xg rsr_win: Proportion above the single lowest-RSR conformer from the input pool to allow ensemble
members.

e -xg nopt: Maximum number of conformers to begin ensemble optimization (reduction made through progres-
sive RMSD compression).

e -xg_clip: Minimum fraction of occupancy that the least-occupied confomer may have relative to the most
occupied.

e -xg_scope: Distance in Angstroms beyond the multi-mol2 scope ligand to carve the real-space density for
ensemble optimization.

e -xg pcrash: Amount of ligand-protein heavy atom surface interpenetration beyond which a conformer will be
dropped (more negative indicates more penetration allowed).

Evaluation of an ensemble for real-space correlation-coefficient and real-space R is done as follows:

# Directory: examples/xgen/refine/test3dvi
# Evaluation for RSCC and RSR

> cat xgensemble-confs.mol2 lig-orig.mol2 > scope-lig.mol2
> sf-xgen.exe +xg_contour
eval xgensemble-occ xgensemble-confs.mol2 protein.mol2 scope-lig.mol2
protein.pdb density xgeval

# Required command-line parameters:

# occupancies: xgensemble -occ

# ensemble: xgensemble-confs.mol2

# protein: protein.mol2

# PDB protein: protein.pdb

# density prefix: density

# output prefix: xgeval

# Evaluate the original ligand coordinates using the same density scope:

\

echo 1.0 > occ-single

> sf-xgen.exe +xg_contour

eval occ-single lig-orig.mol2 protein.mol2 scope-1lig.mol2
protein.pdb density pdbeval

# KEY OUTPUT FILES:

# xgeval-log Log file with RSCC and RSR

# xgeval -~density-diff .mol2 Difference dots from RSR calculation

# xgeval-iso010.mol2 Equivalent 1.0 sigma contour (if +xg_contour was specified)
# xgeval-iso01.mol2 Equivalent 0.1 sigma contour (if +xg_contour was specified)
# pdbeval -* [Analogous files for pdbevall

In many ways, the statistical evaluation is the most complex of the xGen procedures, as it must make use of
atom-specific and resolution-specific truncated Fourier expansions of atomic scattering factor functions in order to
accurately calculate real-space density for xGen-style ensembles and traditional PDB ligand representations. For the
xGen ensembles, an approximate B-factor is identified during the evaluation process (from 10-100 in steps of 5). For
specified ligand ensembles whose atomic coordinates exactly match ATOM and HETATM records within the given
PDB file, those B-factors will be used.

RSCC, for a number of reasons, is more reliable than RSR in meaningfully assessing xGen ensembles compared
with traditionally optimized ligand models: 1) RSCC is not sensitive to electron density scaling; 2) RSR is often
overfit in a highly atom-centric manner (e.g. a single aryl halogen atom often has a very high B-factor when the arene
does not); and 3) neither xGen nor traditional refinement protocols directly optimize RSCC, but both (to some extent)
optimize functions related to RSR.

The PyMol .pml files in examples/xgen/refine/test3dvl will load either the strict or diverse ensembles and
the most relevant associated files. Figure 5.3 shows such a PyMol session. The loaded files are as follows:
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Figure 5.3 PyMol session with results from strict ensemble generation for the ligand of 3DV1. The two visible items are the
conformer ensemble (xgensemble-confs) and the corresponding 1.0o contour (xgeval-iso10).

lig-orig.mol2
protein.mol2
xgeval -merge .mol2
phases.mtz

pdbeval -confs-bfactor.mol2
pdbeval-iso10.mol2
pdbeval -iso01.mol2
pdbeval -~density-diff.mol2

xgensemble -confs.mol2
xgeval-is010.mol2
xgeval-iso01.mol2

xgeval -density-diff.mol2

density_contour .mol2
xg-xgsphere.mol2
xg-fit00-iso.mol2
xg-fitOl-iso.mol2
xg-fit02-iso.mol2
xg-fit03-iso.mol2
xg-fit04-iso.mol2
xg-exptl00-iso.mol2
xg-exptlOl-iso.mol2
xg-exptl02-iso.mol2
xg-exptl03-iso.mol2
xg-exptl04-iso.mol2

H H R H H H OH H

H* H

Original ligand coordinates

Protein with no ligand

Scope ligand used for evaluation

Map coefficients for 3DV1 (PDB download)

PDB ligand colored by B-factor
PDB ligand 1.0 sigma contour
0.1
Difference dots between observed/calculated

xGen ensemble
xGen ensemble 1.0 sigma contour
0.1
Difference dots between observed/calculated

Full extracted density shown as contours

xGen Gaussian sphere centers
xGen ligand-density contours

Corresponding experimental contours



92 REAL-SPACE LIGAND REFINEMENT (XGEN) MODULE TECHNICAL MANUAL

xgref -prof -blended.mol2 # All blended conformers

30 xgref -prof-best-density.mol2 # High-quality density-weighted conformers
xgref -prof -best-center.mol2 # blended

3 xgref -prof-best-min.mol2 # minimized (constrained)

34 xgeval-confs-rsr.mol2 # xGen ensemble, colored by attributed RSR
pdbeval -confs-rsr.mol2 # PDB ligand, colored by attributed RSR

36
xgeval ~density-lig.mol2 # Real-space density on 0.25 Angstrom grid,

38 # near the ligand for evaluation of density fit

Many of these visual depictions are not standard in crystallography workflows, but they have proven useful in
understanding why a particular conformer or ensemble is either nominally better or worse than another.

5.5 FITTING A LIGAND DE NOVO

The xGen module is also capable of fully de novo fitting of a ligand into a large volume of X-ray density. The process
is similar to the refinement process, with three exceptions: 1) the initial density approximation is very approximately
scoped for a binding site; 2) derivation of the density approximation makes no use of pre-identified atomic positions;
and 3) the xGen command fit is used to fit an agnostically pre-searched conformer pool into X-ray density. The
following example demonstrates the initial rough fitting process:

# Directory: examples/xgen/denovo/lexx
> # Fully automatic density fitting

4 # We are using the Docking module’s multicav method to identify the
# binding site (see site-lig.mol2, used in ../BuildSiteMesh.pml)

# Randomize the input xtal conformer and -pquant forcegen
s > sf-tools.exe regen3d ligand.mol2 1lig
> sf-tools.exe -pquant forcegen lig-random.mol2 pqlig

# Build the density from the density_box.pdb that came from PyMol meshes
2 > sf-xgen.exe dbox raw_density_box.pdb site-lig.mol2 pdb-res density

14 # Make constraints without the ligand *at allx
> sf-xgen.exe -xg_scope +xg_denovo build NONE protein.mol2 density xgden
16
Align randomized ligand conformer SFDB to the xgden target and make ensemble.
NOTE: expand uses the "ligand" only to produce RMSD
information, so we can use the randomized one
sf-xgen.exe fit xgden-ligfit pqlig.sfdb xgfitblob
sf-xgen.exe expand xgden-ligfit xgfitblob-results.mol2 lig-random.mol2 xgfitblob-prof

VvV VvV H# H H

> sf-xgen.exe -pvdiverse ensemble
24 xgden-1ligfit density protein.mol2 xgfitblob-prof-best-density.mol2
xgfitblob-prof-best-density.mol2 xgautoblobensemble
26
# KEY OUTPUT FILES:
2 # xgfitblob-results.mol2 Raw fit into the initial density blob
# xgautoblobensemble -confs.mol2 Ensemble that will serve as new density scope

At the end of this process, we have a ligand ensemble that was derived from the large initial density volume. In many
cases, this ensemble may be adequate for downstream modeling purposes. However, it may also be used to define a
more local volumetric scope for further refinement, as follows.

| # Directory: examples/xgen/denovo/lexx

# Re-build the density using the automatically derived blob ensemble

> sf-xgen.exe +xg_contour +xg_denovo build xgautoblobensemble-confs.mol2
5 protein.mol2 density =xgauto
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Figure 5.4  Fitting a ligand into a volume of density with no prior ligand placement (PDB: 1EXX): (A) Green spheres show
the multi-cav protomol produced by Surflex-Dock (PDB ligand and alternate shown for reference only); (B) Experimental density
contour points extracted from the full MTZ grid; (C) Experimental density contour points with protein atoms subtracted; (D) Initial
rough fit into the de novo density approximation; (E) Ensemble from which the final density approximation is built and ligand
conformers are produced for the final ensemble; (F) The final xGen ensemble.

# Align randomized ligand to the xg AUTO target
> sf-xgen.exe fit xgauto-ligfit pqlig.sfdb xgautofit

# Now let’s make an ensemble from the xgautofit results using the refined density
# This will be used as the seed for a final refinement

> sf-xgen.exe expand xgauto-ligfit xgautofit-results.mol2 lig-random.mol2 xgautofit-prof
> sf-xgen.exe -pvdiverse ensemble
xgauto-ligfit density protein.mol2 xgautoblobensemble-confs.mol2
xgautofit -prof -best-density.mol2 xgautofitensemble

# KEY OUTPUT FILES:
# xgauto-ligfit Idealized density, smaller scope than initial blob
# xgautofitensemble -confs.mol2 Ensemble to serve as input for a final refinement

Here, we have created xGen idealized density from a more well-defined X-ray density scope, and we have a new
ensemble. Again, as with the previous step, the ensemble here may be sufficient for downstream use. However, a final
full refinement will produce a more deeply searched and very likely lower-energy ensemble.

Now, we have a well-defined scope, and we have some (possibly very good) conformers in terms of density fit. A
final full refinement will produce a low-energy ensemble (see below). Figure 5.4 shows the entire process for PDB
code 1EXX (human retinoic acid receptor).

Directory: examples/xgen/denovo/lexx
Now let’s thoroughly refine the ensemble we got

sf-xgen.exe -pquant refine xgauto-ligfit xgautofitensemble-confs.mol2 xgautoref
sf-xgen.exe expand xgauto-ligfit xgautoref.sfdb lig-random.mol2 xgautoref -prof

VvV VvV # #

*

Now let’s make an ensemble from the refine results

> sf-xgen.exe -pdiverse ensemble xgauto-ligfit density protein.mol2

xgautofitensemble-confs.mol2
xgautoref -prof -best -density.mol2 xgautoensemble
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Figure 5.5 Fitting a ligand into a very large volume of density with no prior ligand placement (PDB 2W9H): (A) Green spheres
show the multi-cav protomol produced by Surflex-Dock (full surface of Staph. aureus shown); (B) Experimental density contour
points extracted from the full MTZ grid; (C) Experimental density contour points with protein atoms subtracted along with the
xGen spherical Gaussian centers (tan spheres); (D) Initial rough fit into the de novo density approximation; (E) Re-fit into the
idealized density calculated based on the scope defined in (D); (F) The final fully refined xGen ensemble.

# Identify the scope to compare the PDB ligand and ligand-alt to the xGen ensemble
> cat xgautoensemble-confs.mol2 ligand.mol2 ligand-alt.mol2 > scope-lig.mol2

# Make an "ensemble" from the PDB ligand and alternate
# We have set the file occ-double with occupancies of the primary and alternate conformer
> cat ligand.mol2 ligand-alt.mol2 > ligand-both.mol2

# Now we will rigorously evaluate the xgen ensemble and the PDB ensemble
> sf-xgen.exe +xg_contour eval xgautoensemble-occ xgautoensemble-confs.mol2
protein.mol2 scope-lig.mol2 protein.pdb density xgautoeval

> sf-xgen.exe +xg_contour -xg_ptile xgautoeval-ptile eval occ-double ligand-both.mol2
protein.mol2 scope-lig.mol2 protein.pdb density pdbautoeval

KEY OUTPUT FILES:
xgautoensemble -confs.mol2 Final ensemble
xgautoensemble -occ Corresponding occupancies

H H H H

[Analogous files as seen with eval in section on refinement]

The 1EXX case involved a relatively small change in volume from the initial scope identified by the Surflex-Dock
multicav protomol procedure (Panel C) and the final scope for fitting and refinement (Panel E). Figure 5.5 shows a
contrasting case (PDB code 2W9H), where the original volume identified for ligand fitting is several times larger than
the ligand to be fit. The procedure is identical, but the process of creating the idealized density approximation is
substantially longer, due to the large volume. However, the example demonstrates the specificity with which ligands
can be fit into very large X-ray density volumes.
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5.6 MISCELLANEOUS ADDITIONAL SURFLEX-XGEN COMMANDS AND OPTIONS

Some of the xGen functionality is present to allow for standalone ligand refinement without making use of other
Surflex Modules, and the Tools chapter should be consulted for those commands and options (extract_sfdb,
rms_conflist, get, mget, mgetnum, mergmols). The remaining command (regen) is present to allow for
fresh 3D structure regeneration in cases where the initial ligand approximation is an extremely poor initial starting
point. Rather than using the <prefix>-1igfit idealized density, it uses the <prefix>-constrained version,
which provides very rough restraints to guide the new ligand conformation close to the given one.
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The QuanSA method is the successor to the QMOD approach (versions 4.2 of the BioPharmics Platform and earlier)
[1, 2]. QuanSA builds a pocket field rather than constructing a physical set of probes. QuanSA brings together ideas
and algorithms from molecular similarity [3—10], and multiple-instance learning [11-17] together with many lessons
learned and features developed with QMOD [18-22]. The basic process of constructing a QuanSA model and testing
it on a new molecule parallels that of QMOD. An initial hypothesis of ligand alignment is generated, usually by using
molecular similarity, possibly augmented using knowledge of some ligand’s bound configurations from docking or
from direct experiment. Full cliques of molecular poses (one for each training molecule) are constructed, along with
alternative poses. A model is then constructed that is a physical field around the training molecules that behaves
much in the same way as a protein binding site but without the literalistic aspect of QMOD. The final QuanSA model
requires iterative refinement of both the pocket-field parameters and the ligand poses, but the process is relatively
rapid. New molecules are flexibly fit into the model, and this results in a prediction of both binding affinity and bound
pose families. In addition, computations are made to yield quantitative measurements of model parsimony, confidence
for each test molecule prediction, and estimates of structural novelty for test molecules.

Our most recent work has demonstrated a striking synergy between QuanSA model predictions and those from
FEP* [2] on a wide range of protein targets.

The basic construction process consists of a sequence of commands, all implemented within the QuanSA module.
The procedure requires straightforward simple user input (e.g. molecule structure files and activity values). Together
with the Tools module, the equivalent of SMILES strings and molecular activities are all that is needed to begin
building models.

6.1 QUICK START

It is easy to build physically-based activity models with QuanSA. As with all other Surflex modules, calculations
must be preceded by ligand preparation with the Tools module forcegen command. The recommended option for
ligand preparation is -pquant. Shared with the other modules are the —torcon and —-poscon options, which allow
a user to specify preferred geometries and alignments for particular molecular subfragments. QuanSA models are
portable as single files, referenced by model name (e.g. model gm00 refers to the structured QMP multi-mol2 file
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gqm00.qmp.mol2). The corresponding learning state, used for future refinement, is also portable (e.g. model gm00
refers to the QML file qm00.qml .mo12).
The command structure is streamlined, with a typical pocket-field building and testing sequence going as follows:

sf-quansa.exe init TrainData mols.sfdb gm # Initialize-->alignments
sf-quansa.exe build gm-init-00 qmOO # Model building
sf-quansa.exe -namelist TestNames score qmOO test.sfdb qtest00 # Scoring new molecules
sf-quansa.exe eval gtestOO-report.txt TestData qtestOOstats # Statistical evaluation

vV V V VvV

Owing to the central importance of an initial alignment hypothesis in producing predictive QuanSA models,
hypothesis generation is incorporated as a user-controllable process within model-building. Prior to training a
QuanSA model, a user may derive a partial alignment hypothesis and provide a given collection of training molecule
poses to QuanSA. Alternatively, the process can be run in a fully automatic fashion. Procedures within the Similarity
and Docking modules can both be effectively used in guiding ligand alignments. Both user-guided and fully automatic
approaches are illustrated in what follows.

Rather than producing a large pile of ranked individual poses, QuanSA produces a set of pose families, which are
influenced not just by the score. As with docking, the process of fitting molecules into a QuanSA model can produce
odd poses that score nominally high, but which are clearly incorrect. We use a statistical-physics approach to adjust
the scores used for ranking the pose families that takes into account the similarity of the poses within a family to the
optimal training molecule poses. Using the pose-families makes the interpretation of models more intuitive. One sees
coherent and sensible predicted poses nearly always when they should exist. Also, the pose families give a nice idea
of which parts of the ligand are tightly held and which can move around a bit. The pose families can be viewed in the
build command output file qmOO-traintest-topfam-results.mol2.

QuanSA constructs a soft envelope around the full set of training molecules and encourages test ligands to find
poses that lie within that envelope (a more permissive envelope is used during training to help prevent wandering).
The envelope also helps to produce predicted poses that are only infrequently odd-looking. The degree of penetration
into this exclusion surface also provides an idea of when a new ligand really has exceeded the physical limits of where
training ligands have explored. This is an especially helpful value to consider if one uses a QuanSA model to screen a
very large number of new ligands. Those that stay within the envelope, even when they look pretty novel, are predicted
much better than the ones that cannot stay inside.

In order to help quantify the molecular space upon which a QuanSA model will be predictive, QuanSA produces
probabilistically normalized confidence and novelty scores. So, for different QuanSA models and targets, a confidence
score of 0.7 means the same thing relative to the variation seen in the training set. So, for a highly congeneric
training set, with little variation, raw similarity scores that are very high will produce adjusted confidence values
that are comparable to those seen for a different training set with lower raw similarity values but where the training
ligands are more diverse. It gives a more intuitive feeling for how far one can push a model. Generally speaking,
a normalized novelty score (“pNov”’) of < 0.85 will reject clear outliers. Similarly a normalized confidence score
(“pConf™) of > 0.35 will identify molecules that have good support from the structures present in the training set.
Last, a normalized exclusion envelope score (“pExcl”) of < 0.95 indicates that a molecule has not obviously extended
beyond the physically well-defined space within a model.

We term “in-model” predictions to be those that meet both the novelty and exclusion criteria. It is recommended
to be judicious with out-of-model predictions, typically using such molecules to further refine one’s understanding of
a binding pocket or for ambitious scaffold jumps.

6.2 QUANSA COMMAND LINE INTERFACE

Note that there may be minor variations between the figures shown in the manual and the precise results shown in
the software distribution. There are no statistically significant differences, but, for example, the Nt" ranked solution
indicated in the manual may correspond more closely to the (N-1)%% in the actual distribution. The variations are due
to small algorithmic changes across minor version increments as well as cross-platform and compiler differences.

This is the command-line help listing of QuanSA:
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PRIMARY CHANGES IN CURRENT VERSION

BioPharmics Platform Version 5.193

sf-quansa (v5.193) <options> <command> <req command args>

CORE COMMANDS:
init
-clnmols
-clselwin

-clrms
-clknown
-clkthresh
-clkmaxn
-clnorm
—addthresh

-clnmake
-compress
-assay_delt
build
-—act_win
-badpose
score
-fastalign
-hardalign
-multiproc
add
-addthresh

xval
eval
select
disp
paint
paintall

train-act train.sfdb initname

(10)
(2.50)

(0.10)
(none)
(6.50)
(30)

(6.50)

(5)
(50)
a (0.10)

(4.0)
(0.65)
modelname
(100)
( 15)
npc pnum
modelname
(6.50)

Number of molecules to select for core multiple-alignment

Activity window:
0.0 --> select first <clnmols> mols
> 0.0 --> select from top activity window
RMS for grouping final cliques
Set of known poses for competitive ligands
Threshold for winners against known poses
Max number of winners against known poses

Turn OFF normalization of clique scores (default ON)

Threshold for eSim alignment to winners

Max number of initialization QMLs to make
Number of poses for multi-align NxN targets

99

Absolute assay deviation below which error is defined to be 0.0
initname modelname

Activity window for alignment target choice
Sim threshold for decoy pose detection

testmols.sfdb testname

Number of train mols to use for fast alignment
Number of train mols to use for thorough alignment
Indicates NPC processor run, current processor is PNUM

new-act newmols.sfdb newname
Threshold for eSim align to existing trainmols to add

initname modelname n_xval_rounds
test-report.txt exptl-act outprefix

ModelList
modelname
modelname
modelname

outprefix

outprefix

inposes.mol2 outprefix testmolname
inposes.mol2 outprefix

MOLECULE SEARCH/ALIGNMENT CONSTRAINTS:

[-torcon must be applied using forcegen,

-poscon <frags>
-pospen (5.00)
-pwiggle (0.25)
-torpen (0.05)
-twiggle (5.00)

-mmsweight (0.5)

-mmwiggle (0.0)

CORE OPTIONS:

-namelist

-workdir (work)

-nthreads (36)

Molecular fragments (multi-mol2 file) to constrain position

Penalty for deviating from specification (kcal per Angstrom~2)
Amount of free wiggle with zero penalty (Angstroms)

with penalty modifiable here:]

Penalty for torsional deviation (kcal per deg~2)
Amount of free wiggle with zero penalty (degrees)
Strain weight for energy above global minimum

Among of strain free weighted strain

List of molecule names for SCORE (default:
Specifies a particular work directory
Maximum number of threads to use

full sfdb)

All commands should be typed lower-case. Molecular output is generally in Sybyl mol2 and SFDB formats, and
these are the preferred input file formats as well. In some cases, SFDB format (produced by ForceGen) is required.
Note that the output of the QuanSA procedures (provided in the examples/quansa directory) have been run using
the current primary development and production platform, which is Ubuntu Linux running Intel processors. There

may be slight differences with different architectures, but the results will not be meaningfully different.

6.3 PRIMARY CHANGES IN CURRENT VERSION

General notes about the current version can be found in the Release Notes in the Foreword to this manual. Detailed
notes can be found here.


https://optibrium.com/BioPharmics/Release-Notes
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6.4 LIGAND PREPARATION, MOLECULE NAMES, AND ACTIVITY VALUES

As with docking and similarity computations, ligand preparation, especially regarding protonation and tautomer choice
can be critical. Detailed discussion of the use of the Tools module for ligand preparation has been discussed in the
preceding chapters. The recommended option for the Tools module forcegen command is ~pquant, which performs
the most rigorous and extensive conformational elaboration of the different parameter schemes. Typical preparation
is done as follows.

# Directory: examples/quansa/serotonin
> sf-tools.exe -pquant forcegen serotonin.mol2 pgser

# KEY OUTPUT FILE:

s # paser.sfdb SFDB file containing enumerated conformations

Please note that molecule names are critically important in the way that QuanSA tracks molecular identity from
procedure to procedure. So, for example, the pathname to a molecule may be foo.mol2, but the name inside the
file might be unrelated (for example, “bar”). Within QuanSA, the molecule name specified within the files prepared
through the Tools module forcegen command will be used as the sole means to identify the molecule and assign
its activity value. The best practice, to avoid confusion, is to make sure that molecule names are simple, begin
with a letter, and are purely alphanumeric, possibly with hyphens. The use of underscores, whitespace characters,
slashes, or backslashes will cause serious problems, as will accidental duplication of molecule names. In the event
that customized procedures are used to produce, for example, poses to guide molecular alignment, care must be taken
that the molecule names are manually checked and matched in order to ensure proper behavior of the procedures.

Note also that, as with other modules, if the intention is to make use of either the —torcon or ~poscon constraint
parameters, it is strongly recommended to include the —torcon constraint during ligand preparation as well. This
will help to ensure that the conformational constraints are adhered to as well as possible and that conformational
exploration is focused on unconstrained degrees of freedom within the molecules.

QuanSA scores the interactions between the induced pocket-field and ligands in units of pK,. Consequently, the
units in which activity should be expressed are pKy, illustrated as follows:

# Directory: examples/quansa/serotonin

> # FILE CONTENTS: TrainData

10

m4a = 10
mla L7
m4b = .5
m8b =
mi0b =
mllb =
mba =
m2b =
m3a =
m3b =
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Here, molecule m4a has a specified activity of 10.0, which corresponds to a dissociation constant of 0.1nM. The
formula for conversion is pKy = —logio(K4), where the K; must be specified in molar units. The provided
TrainData file relates training activity values to molecule names, which, as mentioned earlier, are critical to many
QuanSA procedures. The TrainData file has a formal syntax. It is possible to specify either “=" or “<” or “>” as
activity modifiers in the TrainData file. The “>” constraint is helpful to indicate when molecules certainly have
some level of reasonable activity, but where the precise value may not be known in the preferred assay (as when the
data come from literature). The “<” constraint is helpful to indicate molecules that lack activity at some threshold
concentration.

Generally speaking, it is recommended to be thoughtful about sorting the TrainData file. The simplest approach
is to sort from high activity to low activity, which will ensure that, for example, automatic selection of molecular
alignment (see init below) seeds will proceed beginning with the highest activity molecule. Alternatively, as was
done above, the first molecules were selected to cover the main scaffolds present in the data set. Here there are just
two scaffolds, with molecules m4a and m8b being the most active for each class.
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It is important to understand the limitations of activity values derived from different types of experiments. Typical
enzyme assays can distinguish activity levels within about a factor of 3 (so InM and 3nM are not significantly different).
In pK space, —l0g10(1.0 x 1079) is 9.0 and —log10(3.0 x 1079) is 8.5. So, if a completed model has roughly 0.5
log units of mean error in the computed versus experimental activities, that approaches the resolution of many assays.
Very high quality radioligand displacement assays can distinguish activities within a factor of 2, which translates to
a pKy difference of 0.3. For more complex cell-based or functional assays, the reliability of the assay might be only
about a factor of 5, which yields 0.7 in pK, space. Note that the fundamental limitation on experimental data accuracy
may preclude nominally high predictive correlation values depending on the overall activity range within the data.

Non-Standard Assay Values: Typical values from receptor binding or enzyme assays are easily treated by QuanSA,
because the fundamental interaction that is being measured is a non-covalent binding interaction whose magnitude
is quantified by a dissociation constant. Similarly, assays values that are reported as effective concentrations (e.g.
ECs5¢ or IC50) can be converted to QuanSA activity values as shown above. The assumptions made by the QuanSA
method are that the activity being modeled among a set of ligands is governed by a shared binding event: i.e. that the
ligands are competitively binding the same active site. Further, QuanSA assumes that the activity being modeled is
properly related to a thermodynamic event: the association of a ligand and macromolecule. There are cases in ligand
design where the assay may be either qualitative (inactive, somewhat active, very active), quantifiably binary (inactive
or active), or quantitative but expressed as a lethality percentage. In such cases, the assays may be done at a single
concentration, in which case the preferred QuanSA activity values cannot be directly produced.

In such cases, the recommended approach is to map the assay values into nominal equivalent pK, values and make
use of the < and > constraints. So, for a binary assay or one where a lethality percentage of some critical value is
treated as a dividing line between “active” and “inactive” compounds, activities can be specified as follows:

# Binary assay specification. The first six compounds are
# active. The last four are inactive.

3 # FILE CONTENTS: TrainData

mO >
ml
m2
m3
mé
mb
mé
m7
m8
m9

~
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This specification requires QuanSA to build a model that puts roughly 2.0 log units of activity separation between the
active and inactive ligands. Further, it equates activity with a nominal pK, of at least 7.0, which requires QuanSA to
place a significant amount of field strength against which the ligands will interact. Note that this is simply a guideline
that has been tested on a small number of cases where real-valued activity values were binarized. The high activity
value specified may be larger than what is proposed here, and the gap between the high and low values can be different.
However, the values should make sense in an interpretation where they actually are thought of as pK,. So, for example,
activity values of greater than 15.0 (corresponding to a femtomolar effective concentration) make little sense, and
activity values much lower than 3.0 (corresponding to a millimolar effective concentration) also make little sense.

In a similar fashion, cases where multiple levels of activity are desired can also be approximated, and these are
facilitated by the —assay_delta parameter, which specifies an amount of “slop” around a equality-specified activity
value (the default for this value is 0.1). The following would be a reasonable approach for four activity levels:

# Binary assay specification. The first six compounds are
# active. The last four are inactive.

3 # FILE CONTENTS: TrainData

mO0 > 8.5

ml > 8.5
m2 = 7
m3 = 7
mé = 7
mb 5
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mé = b5
m7 = b5
m8 < 3.5
m9 < 3.5

# The -assay_delta parameter would be specified as 0.5

For this case, the result of the combination of inequality constraints, equality constraints, and a specified —~assay_delta
value of 0.5 is that each activity group (high, medium high, medium low, and low) has a buffer of 1.0 log unit between
them. Again, this represents a suggested guideline, but systematic experiments using qualitative assay values have not
been undertaken.

6.5 NAMING CONVENTIONS FOR MODEL BUILDING

For a particular model-building exercise, the recommended setup is to arrange a QuanSA run folder as follows:

# Directory: Runs from multiple alignment hypotheses may reside here
quansa-target-run/

# Prepared training mols
> sf-tools.exe -pquant forcegen targetname.mol2 pq

# Training data: Activity values and molecule structures
quansa-target-run/TrainData # Contains (molname [= < >] activity) on each line
quansa-target-run/pg*.sfdb # Prepared molecules

# QuanSA working subdirectory: This is required
quansa-target-run/work/ # The path can be changed with -workdir but it should be

# subordinate to the run folder to avoid file clobbering

> sf-quansa.exe init TrainData mols.sfdb gqm # Initialize runs automatically
# Produces gm-smallclique*.mol2
# and gqm-init*qml.sfdb

For each chosen initial alignment, build three variant models

sf-quansa.exe build gm-init-00 qmOO # build model from gm-init-00.qml.sfdb
sf-quansa.exe build gm-init-01 qmO1 build model from gm-init-01.gml.sfdb
sf-quansa.exe build gm-init-02 qmO02 build model from gm-init-02.qml.sfdb
sf-quansa.exe build gm-init-03 qmO03 build model from gm-init-03.qgml.sfdb
sf-quansa.exe build gm-init-04 qmO4 build model from gm-init-04.qml.sfdb

V V.V V VvV #

#
#
#
#

H*

Run a statistical analysis of training performance
> sf-quansa.exe select ModelList qm # ModelList contains the
# names of all models, one per line

For a particular target corresponding to a set of training ligands and activities, a single run folder containing
models derived from multiple alignment hypotheses can be maintained. For purposes of inter-model comparison,
this arrangement can make visualization simpler than, for example, putting models based on different hypotheses in
different places. Also, this arrangement allows for shared use of prepared training ligands and new ligands (which
might reside in a NewMols subdirectory).

# Directory: examples/quansa/serotonin
> sf-quansa.exe disp qmOO0 dispOO

# KEY OUTPUT FILES:

# disp00-pm.mol2 shows the structure of the pocket-field

# dispO0O-<trainmolname>.mol2 individual mol2 files for training ligands

# shows interactions with the QuanSA pocket-field

Visualization of a particular pocket-field requires running the disp command on the corresponding QMP mol2
file (e.g. qm00.qmp.mol2). Note that the QMP file contains the final optimal poses of the training ligands and the
pocket-field in a non-visualizable form.
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Generation of multiple models is recommended for initial model building when there is uncertainty about the
molecular alignment. The training process includes a complete re-fit of the training molecules into the derived
pocket-field, with the rank correlation and the mean error being the key descriptive statistics, and this information is
reported within the “*-trainreport.txt” files for each build command. In addition, model parsimony is an important
criterion. This value measures the degree to which molecules that have similar levels of activity also are predicted to
optimally bind in similar poses, both in terms of surface shape and polarity. Higher parsimony models will appear
more “coherent” when visualized. The select command performs a statistical analysis of the model performance
and parsimony in order to offer guidance as to which of several models are likely to be the most predictive on new
ligands.

6.6 SIMPLE QUANSA MODEL BUILDING

In the simplest and most automated manner of constructing a QuanSA model, once ligands have been prepared, the
model-building process requires two steps (using the init and build commands), illustrated below on the simple
serotonin example.

# Directory: examples/quansa/serotonin

3 # Prepare deeper ring searched conformational ensembles

19

> sf-tools.exe -pquant forcegen train.mol2 pqtrain
# Key Output File: pqtrain.sfdb
Compressed format of deeper ring-searched conformational ensembles

# Build multiple initial alignments. Default behavior is to use 10
# training molecules as core alignment seeds (controlled by
# -clnmols). These are automatically selected from a window of
# activity from the most active molecule (default 2.5, controlled
# by -clselwin)
> sf-quansa.exe init TrainData pqtrain.sfdb gm
# File Contents: TrainData (abbreviated and annotated)
m4a = 10 # Molecules may be listed in a specific order
mla = 9.7 # so that the user can choose which molecules
m4b = 8.5 # to use as alignment seeds. Here, QuanSA chooses.
m2b = 6.7
m3a = 6.6
m3b = 6.5
# Key Output Files:
# qm-log The log file from init
# gqm-*.mol2 An initial coarse alignment of a few mols
# gm-smallcliquex*.mol2 Alignment of a few more mols chosen by 2D dissimilarity
# gqm-init*.qml.sfdb Full initialization information for build

It is important to understand the parameters of the init command. The default is to build cliques within 0.1 RMSD
of each other, however -clrms allows more coarsely grained choices. Further, the number of molecules in the initial
alignment should reflect the diversity of scaffolds in the training molecules or the major substituents of variants of
the same scaffold. As the initial alignment number becomes larger, the process becomes slower so users should not
just arbitrarily set a high number. For multiple-core workstations, this is less of an issue. The ten training molecules
are automatically selected from within an activity window (2.5 by default) of the most active molecule. (The small
serotonin example has only 4 molecules within 2.5 logs of the most active molecule.)

If the activity window is set to zero, then the first N listed in the TrainData file (5 by default) will be used for
the initial alignment, which gives the user complete control over which molecules to use, if desired. By default,
up to five full alignments of the training molecules (qm-init*.qml. [mol2/sfdb]) are generated. If necessary for
larger or more complicated data sets, the number of cliques produced can be increased using the ~c1lnmake parameter.
In some cases, it may be necessary to decrease the —clrms. In the serotonin example, the init command first
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generates a 4-molecule coarse alignment (qm-0*.mol2). Next, 2D dissimilarity is used to choose molecules to add in
order to generate a refined alignment (qm-smallclique*.mol2). The refined small clique is then used to generate the
learning state with multiple poses per training ligand and initial observers (qm-init*.qml.sfdb). The output file
gm-init*.qml.mol2 is a full clique of the top poses of all training ligands. In summary, the coarse alignments are
used to seed the small clique alignments which then seed the final alignments. This step-wise building results in more
coherent and accurate alignments.

The init command has two primary effects. It produces training molecule alignments fully automatically, but it
can be influenced by user knowledge and guidance. It also generates pose variants for each molecule and the possible
pool of initial observers. The information is embedded along with the training data and user-specified options into the
resulting “QML” file, which will be used in the subsequent model building steps. The provided training data file relates
training activity values to molecule names, which, as mentioned earlier, are critical to many QuanSA procedures. The
training data file has a formal syntax, which is described above. The pg*.sfdb file provides a deeper ring-searched
set of conformational ensembles in a compressed format. The names specified within these molecule files must match
the names specified in the training data file one-to-one, although the order in the list is unimportant. These molecule
files are expected to have been prepared using the Tools module -pquant forcegen procedure.

QuanSA expects that a “work” directory exists, in which temporary files can be placed (these are cleaned up
automatically). By default, this directory is assumed to exist (named “work™) subordinate to the directory in which
the QuanSA run is contained. Multiple QuanSA runs can be made in the same place, the only requirement being that
the different names are given for each initialization and for each model.

Figure 6.1 highlights several aspects of the QuanSA initialization information produced from the init command.
As can be seen from inspection of the log file (qm-log) produced by init, four molecules were chosen as being
diverse structural representatives first from within 2.5 log units of the most active molecule: m4a, m8b, mla, and
m4b. The coarse alignment of these four molecules, gm-*.mo12 (green), is then used to seed a small clique alignment
gm-smallclique*.mol2 (cyan) which is used to generate the learning state gm-init*.qml.sfdb. Two chemotypes
(a more potent angular tricyclic scaffold, e.g. m4a, and a linear tricyclic one, e.g. m8b) are both represented within
the chosen set, with tight superimposition of the protonated amines and of the common acceptor oxygen atoms. The
initialization procedure also generates variants for each molecule.

The user is strongly encouraged to examine and consider which alignment cliques appear to make the most sense
with knowledge of structure-activity information as well as considerations about conformational preferences that may
have been designed into the chemical series. As with other modules, guidance can be provided to the init procedure
in many ways, which will be discussed in more detail later in this chapter.

Following the initial setup, the recommended procedure is to produce one model for each clique (using the build
command), for each alignment that appears sensible. In this example, five slightly different clique alignments were
produced, all of which appeared to be reasonable. This completes the model construction steps, including re-fitting
each of the training molecules as a nominal test at the end of model construction. Resulting models are typically
assessed based on convergence and parsimony criteria using the select command.

# Directory: examples/quansa/serotonin

# One model each for gm-smallclique-00, gm-smallclique-01, ... gm-smallclique-05
> sf-quansa.exe build qm-init-00 qmOO
> sf-quansa.exe build gm-init-01 qgmO1
> sf-quansa.exe build gm-init-02 gm02
> sf-quansa.exe build gm-init-03 qm03
> sf-quansa.exe build gm-init-04 qmO4

# Key Output Files:
# qm0 [01234] . qmp .mo12 models with training ligand best poses
> # qm0 [01234] . qml .mol2 model learning state for refinement
# qmO [01234] -trainreport.txt Summary of convergence and parsimony
# qm0 [01234] -traintest -topfam-results.mol2 Top re-fit pose families for training mols

Each complete model building, refinement, and re-fitting of training molecules takes just a few minutes minutes for
this example. The critical files include the report file and the QMP and QML files. The training report contains the
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QuanSA serotonin model

gm-00.mol2 gm-smaliclique-00.mol2 gm-init-00.gml.mol2
4-mol alignment 10-mol alignment Top poses in learning state

" L%
I
gmO00.gmp.mol2 gqm00.gmp.mol2
Final optimal poses Final optimal poses + pocket-field

Figure 6.1 Top row: Shown is an initial coarse alignment for 4 serotonin training molecules gm-00.mo12 (green)
used to seed a 10-molecule small clique, gm-smallclique-00.mo0l2 (cyan), which is used to generate the learning
state gm-init*.qml.sfdb. Shown here in magenta is the top pose from the learning state for each training
ligand, gm-init-00.qml.mol2. Bottom row: Shown in salmon are the final optimal poses of the training molecules,
qmo00. gmp.mo12 without and with the derived pocket-field. Although the top poses in the learning state are in a high
quality mutual alignment (magenta), the final optimal poses (salmon) are even more compactly aligned.

final computed activities for the training ligands from the model refinement procedure, then the parsimony calculation,
and finally the statistics corresponding to a full re-fit of the training ligands into the model. It is advisable for the user
to check for adequate model convergence carefully. MSE values of less than 0.1-0.2 (beginning of the training report
file) generally will mean that a model has converged to within the accuracy of typical biochemical assays. Outliers in
terms of deviations between actual and computed scores may indicate an assay issue. For example, a molecule that
is persistently overpredicted may be very similar in all respects to multiple other highly active molecules. In such a
case, a solubility or other issue may be responsible for an inaccurate computed score. If outliers are persistent, the
user should consider making use of an initial hypothesis alignment that differs in significant respects from the current
one. The user may also need to contemplate the potential for multiple binding sites or of partially overlapping binding
modes that will be poorly modeled by the normal QuanSA procedure, which seeks to find a single parsimonious model
for the activity of all training molecules.

It is also important to consider the convergence using the full re-fit of training molecules to the model. Occasion-
ally, the procedure is able to uncover new poses that were not explored in model-building (usually resulting in an
overprediction). Also, underpredictions can occur if a ligand in its optimal final pose from training is in some kind of
saddle-point configuration that is difficult to recapitulate through the normal fitting procedure. Given models that have
converged equally well (considering the re-fit statistics), we have found that the parsimony of the different models
is the most useful feature in determining which model variant is likely to be the most predictive. The parsimony
measures the degree to which molecules that have similar activity levels also have optimal poses that are similar to one
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another. Mean error and Tau are the preferred measurements of model convergence (measures such as 1> or RMSE
tend to overweight the effects of single outliers).

The select command, illustrated below, automates the process of considering model convergence and parsimony
across multiple different build conditions.

# Directory: examples/quansa/serotonin
# File contents: ModelList

qmO00

qmO1

qmO02

qm03

qm04

# The select command combines information on model quality to help
# adjudicate which model or models are most likely to be predictive
> sf-quansa.exe select ModelList qm

3 # Key Output Files
# gm-selectreport.txt Human-readable file summarizing model quality
s # gn-selectreport.tab Tab-delimited summary table

# Excerpted gm-selectreport.txt:

Model 000: qmOO NO_HOLDOUTS # Indicates reading of model qmO0O, with
Model 001: gmO1 NO_HOLDOUTS # no holdout set of molecules specified.
# Holdout sets are described later.

3 # Statistics for model quality across the different conditions
Model statistics: mean_parsim = 0.698 mean_traintau = 0.901 mean_trainerr 0.357
Model statistics: stdev_parsim = 0.037 stdev_traintau = 0.075 stdev_trainerr = 0.079

# Probabilistically normalized statistics for each model and a summary score (prod_score)

Model N. prod_Score Pars pPars TrTau pTrTau TrErr pTrErr
qm00 0 0.045954 0.714 0.665 0.900 0.494 0.443 0.140
qmO01 1 0.019393 0.628 0.028 0.951 0.746 0.231 0.945
qm02 2 0.175949 0.724 0.757 0.950 0.742 0.396 0.313
qm03 3 0.004841 0.728 0.790 0.756 0.027 0.416 0.230
3 qm04 4 0.278472 0.698 0.496 0.949 0.738 0.301 0.762

Here, model number 4 (qm04) had the best overall combination of training statistics. In this case, given the very
small training set, model convergence likely reflects some degree of overfitting as well. Figure 6.1 shows an example
of a final derived pocket-field and optimal training molecule poses for this small serotonin example. As described
above, the disp command will be used to display the pocketfield using qmOO as an example (disp-pm.mo12) and the
interactions with the final poses of the training molecules (disp-<trainmolname>.mol2).

# Directory: examples/quansa/serotonin
> sf-quansa.exe disp qmO0O disp

KEY OUTPUT FILES:
disp-pm.mol2 shows the structure of the pocket-field
disp-<trainmolname>.mol2 individual mol2 files for training ligands
shows interactions with the QuanSA pocket-field

H H H H

In this case, the initial training produced the following training report for qmO04:

H*

Directory: examples/quansa/serotonin
# File Contents: qmO4-trainreport.txt
Completed pocketfield gmO4 training report:

Trainmol m4a: act 10.00 ... PRED: 9.82 ... DIFF 0.078
Trainmol m8b: act T.7T7T ... PRED: 7.30 ... DIFF 0.373
Trainmol mla: act 9.70 ... PRED: 9.10 ... DIFF 0.501
Trainmol mlOb: act 7.30 ... PRED: 7.16 ... DIFF 0.037
Trainmol mllb: act 7.30 ... PRED: 6.99 ... DIFF 0.207
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Figure 6.2 Shown without and with the pocket-field are the optimal final training poses and pocket-field interactions

for the training molecules m4a and m8b.

Trainmol m4b: act 8.50 ... PRED: 8.16 ... DIFF 0.241

Trainmol mba: act 7.30 ... PRED: 7.10 ... DIFF 0.095

Trainmol m3a: act 6.60 ... PRED: 6.37 ... DIFF 0.127

Trainmol m3b: act 6.50 ... PRED: 6.68 ... DIFF 0.081

Trainmol m2b: act 6.70 ... PRED: 7.07 ... DIFF 0.271
Overall MSE: 0.0603

Parsimony calculation:
Mol m4a mlia: (Actl 10.0 Act2 9.7) weight 0.96 sim 0.81
Mol m8b miOb: (Actl 7.8 Act2 7.3) weight 0.90 sim 0.76

Total parsimony: 0.698

Number of Mols 10
95.00% Confidence Interval define by CI_Low and CI_High, with 1000 resamples.

Stat Value CI_Low CI_High
KTau 0.949 0.739 1.000
R 0.972 0.813 0.994
R2 0.944 0.662 0.987
AvgErr 0.301 0.222 0.381
RMSE 0.328 0.235 0.408

Linear Fit: slope 0.831022 (xint -1.460190 yint 1.213450)
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K_Tau pval = 0.00008, estimated using 100000 iterations.

Mol Exp Pred Err PNov PConf PExcl TMol MaxSim JointSim
méa 10.000 9.770 0.230 0.005 1.000 0.294 méa 0.996 9.995
mla 9.700 9.110 0.590 0.296 0.998 0.334 mla 0.999 10.000
mb5a 7.300 7.120 0.180 0.505 0.992 0.271 mba 0.999 10.000
m4b 8.500 8.170 0.330 0.508 0.991 0.318 méb 0.998 9.989
mllb 7.300 7.170 0.130 0.524 0.962 0.383 mllb 0.958 9.890
m10b 7.300 7.710 0.410 0.565 0.994 0.334 m10b 0.957 9.973
m2b 6.700 7.090 0.390 0.587 0.992 0.348 m2b 0.994 9.934
m8b 7.770 7.450 0.320 0.603 1.000 0.314 m8b 0.994 9.953
m3a 6.600 6.380 0.220 0.737 1.000 0.295 m3a 0.999 9.985
m3b 6.500 6.710 0.210 0.971 0.999 0.336 m3b 0.992 9.925
Min 6.500 6.380 0.130 0.005 0.962 0.271 TMol 0.957

Avg 7.767 7.668 0.301 0.530 0.993 0.323 TMol 0.989

Max 10.000 9.770 0.590 0.971 1.000 0.383 TMol 0.999

The first part of the QuanSA trainreport contains the final scores for the optimal poses of the training ligands (see
qmOO-trainreport.txt for this example). Those scores reflect the highest-scoring poses for each molecule during
the entire evolution of the initial alignments that were derived from the alignment hypothesis. The second part
summarizes the computation of model parsimony (higher values are better). The build procedure performs a full
re-fit of the training molecules (as if they were “new” molecules to be scored) in order to provide a firm quantification
of convergence, which is summarized after the parsimony calculation report. In this example, the re-fit of the molecules
produced a good fit to the training data (see above). The first table of information contains summary statistics and
confidence intervals. The final mean error of 0.3 log units is at or below the resolution of typical biochemical
assays, and the correlation and rank statistics show a very high degree of fit. The next table shows specific data for
each molecule. Here, molecule m2b found a slightly higher-scoring pose than was uncovered during initial model
refinement. Figure 6.1 shows the resulting model. The concordance of the different scaffold types is high, though
it differs somewhat from the initial hypothesis alignment. Much of the activity variation depends on the ability of
ligands within this series to simultaneously make the favorable interaction with their amine protons while also being
able to fit into the complicated shape of a hydrophobic pocket.

The model building process computes statistics of variation for the training ligands in order to provide scaled,
probabilistic values for novelty, confidence, and exclusion penetration for new molecules. The novelty value (PNov in
the trainreport table) for a particular molecule represents the degree to which the union of the training molecules covers
the predicted pose for that molecule, both in terms of pure shape as well as the type and placement of electrostatic
functionality. High values of novelty indicate that a molecule may lie beyond what can be predicted from the model
(novelty values larger than 0.85 mark outlier territory). The confidence value (PConf) indicates the degree to which
a single training molecule (in its optimal pose) looks like the molecule in question (the particular training molecule
along with the raw similarity score are provided). High confidence generally is predictive of lower prediction error (a
PConf value of 0.35 or greater is a sensible cutoff). The exclusion penetration value (PExcl) measures the degree to
which the final predicted pose of a molecule protrudes beyond the joint envelope surrounding the final training poses.
Molecules that push past this envelope are much less likely to be predicted well than those that fall within it (PExcl
values greater than 0.95 generally indicate structural envelope outliers). Note that it is possible for a training molecule
itself to present as an outlier with any of these measures, because the statistics of the measurements come from the
full population of training ligands.
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6.7 NEW MOLECULE PREDICTION AND MODEL REFINEMENT

The process of fitting a new molecule into the model for scoring usually takes 10-20 seconds for relatively rigid
molecules of small size and up to a 1-2 minutes for larger and more flexible cases. The alignment is done in an
analogous fashion to the process used for training molecules, and it requires quite thorough optimization in order to
produce reliable scores. The method makes use of the final positions of the training molecules, and the particular
training molecules that were chosen in the initialization phase serve as alignment targets. User-selectable options for
modifying this procedure will be discussed later. The output is similar to that from docking (see previous chapters),
with scores in pKy units and with poses and pose families in multi-mol2 files. Reported novelty and confidence
measurements make use of statistics from model construction and are normalized using a probabilistic framework
such that threshold values can be sensibly used across different cases. The following summarizes the procedure and
results from scoring 7 new molecules based on the model just described.

# Directory: examples/quansa/serotonin

# Prepare deeper ring searched conformational ensembles

. > sf-tools.exe -pquant forcegen test.mol2 pqgtest

10

# Key Output File: pqtest.sfdb
Compressed format of deeper ring-searched conformational ensembles

> sf-quansa.exe score qmO4 pqtest.sfdb qtest04

# Key Output Files:

# qtestO04-report.txt (Test molecule scores and related values)

# qtestO04-topfam-results.mol2 (The single top pose family for each molecule)
# qtestO04-fam-results.mol2 (A1l pose families for each molecule)

This procedure generates multiple poses per molecule prior to building and ranking pose families. Pose family
ranking is primarily dependent on the model score for each pose. However, outlier poses that appear clearly “crazy”
based on quantitative assessment of their relative novelty, confidence, or exclusion envelope penetration will cause
the probability associated with their respective pose family to decrease. Generally, the user only need examine the
top-scoring pose family for each molecule.

# Directory: examples/quansa/serotonin
# File Contents: qtestO4-report.txt

mol pred pconf pexcl pnov tmol maxsim bexcl jointsim
mlb 6.8900 0.9940 0.3750 0.7280 m2b 0.9610 -0.0100 9.8680
m2a 8.9700 0.9910 0.4170 0.2410 mla 0.9620 -0.0000 9.9930
m6a 7.5400 0.5240 1.0000 0.9700 mla 0.8300 -0.1000 8.7010
m7b 6.0100 0.2470 1.0000 1.0000 m2b 0.7890 -0.1500 7.8200
m9b 7.3800 0.9440 0.4280 0.6660 m8b 0.9610 -0.0000 9.8570
mi0a 6.0400 0.8640 0.5130 0.8370 mi0b 0.9370 -0.0000 9.7310
mlla 6.4400 0.8230 0.3130 0.6980 mllb 0.9410 -0.0000 9.7320

In this case, five molecules had novelty values that indicated they were non-outliers. Of these, those predicted to
be most potent were m2a, m9b, and mba. Each of these was predicted with high confidence as well. The scores
for confidence, novelty, exclusion, etc. are analogous to those seen above in the train report file. Raw values are
also provided for similarity to the most similar training molecule as well as the least amount of exclusion envelope
penetration (bexcl). Typically, exclusion values that correspond to normalized pexc! values of less than 0.70 represent
molecules that fall cleanly within the envelope of the training set. Those with values greater than 0.95 fall outside of
the envelope (none here). The report also provides a K-nearest-neighbor score based on similarity calculations using
the final optimal predicted poses, which can be useful for out-of-model prediction estimates.

The experimental activities for these three molecules were close to those predicted: m2a = 9.7, m6a = 6.4, and
m9b = 7.4 (nominal errors of -0.3, +0.7, and +0.4 respectively). Figure 6.3 shows the poses comprising the top
predicted pose families relative to the optimal pose of the most similar training molecule. The variation in the poses
reflects the different ways in which the ligand can fit into the model. Here, there is room for movement for the ring
system as well as for variation in the placement of the nitrogen substituent. Two molecules protruded beyond the



110 AFFINITY MODULE TECHNICAL MANUAL

QuanSA serotonin model: Scoring Test Molecules

] ) ]
\to C’:’:Nw/\ D T\~ SNH A o KSSTNHV\
Test m2a Train m1a Test m6a Train m1a Test m9b Train m8b

Exp pKi=9.7 Exp pKi=6.4 Exp pKi=7.4

Pred pKi = 9.4 Pred pKi = 7.1 Pred pKi=7.8

pNov = 0.562 pNov = 0.822 pNov = 0.416

Figure 6.3 Shown for each of three serotonin test molecules (teal) are the alignments of the top pose family or the
top-scoring pose of the pose family with the optimal pose of the most similar training molecule (salmon). The alignments
are also shown with the interactions with the pocket-field. Test molecules m2a, m6a, and m9b were non-outliers with
pNov < 0.85 and the activities were accurately predicted despite the very small training set.

physical envelope of training ligands (m6a and m7b). The quantitative assessment of prediction confidence, novelty,
and exclusion envelope penetration can all be useful in making decisions during lead optimization. In general, it is
wise to select molecules that are predicted to be potent and which have high confidence and low novelty, as expected.
But active selection of novel molecules or of those that extend beyond the explored training envelope, even in the case
of predicted low activity, can drive model refinement toward a better characterization of a binding site [20].

Given assay data on newly obtained molecules, statistics may be automatically calculated using the previously
generated prediction report. Assay data should be formatted in a 3-column file containing the molecule names, activity
modifiers, and activity measurements (exactly analogous to the TrainData file used in the init procedure). The eval
procedure takes as input a prediction report and newly gathered activity data, and produces statistics such as Kendall’s
Tau ranking, Pearson’s R, and root-mean-squared-error (SDEP) to name a few. Below shows an example of the activity
data file format, command for generating the statistics, and a truncated example of the output. Note this example
makes use of an extremely sparse test set, so performance metrics shown in the evaluation report are not expected to be
statistically significant. However, it illustrates the automated process of evaluating prediction performance requiring
minimal user preparation.

# Directory: examples/quansa/serotonin
> # File Contents: TestData

mlb = 7.3
4 m2a = 9.7
6 mil0a = 6.3
mlila = 6.3



10

NEW MOLECULE PREDICTION AND MODEL REFINEMENT 111

> sf-quansa.exe eval qtestO4-report.txt TestData qtestO4stats
# Key Output File: qtestO4stats-eval.txt

# File contents: qtestO4stats-eval.txt (excerpted)

Stats for all the mols.

Number of Mols 7
95.00% Confidence Interval define by CI_Low and CI_High, with 1000 resamples.

Stat Value CI_Low CI_High

KTau 0.667 0.000 1.000
R 0.865 0.061 0.996
R2 0.748 0.017 0.992
AvgErr 0.456 0.211 0.720
RMSE 0.577 0.271 0.817

Linear Fit: slope 0.736418 (xint -2.429272 yint 1.788960)
K_Tau pval = 0.03845, estimated using 100000 iterations.

The report provides several different presentations of the predicted versus experimental activity values. In general,
the non-parametric rank statistic Kendall’s Tau is quite reliable. Given that QuanSA builds a physical representation of
a binding site based on predicted bound poses, it is important to make use of the prediction quality metrics in assessing
the meaning of predictions on new molecules. Here, we see that, considering all 7 molecules, we have a mean error
of prediction of 0.7 log units. This includes ligands identified as being outliers, based on either structural novelty
or volume exclusion penetration criteria. For ease of visualization of the test results from the score command, the
paint and mget commands parse the qtest-topfam-results.mol2 into the top pose or top pose family as follows:

# Directory: examples/quansa/serotonin
> sf-quansa.exe paint gmOO0 qtestOO0O-topfam-results.mol2 paint00 m2a

# KEY OUTPUT FILES:
# paint00-m2a_fam00_00.mol2 shows top pose and interaction with pocketfield

> sf-tools.exe mget gqtestO0O-topfam-results.mol2 m2a-molnamelist m2a_fam00.mol2

# KEY OUTPUT FILES:
# m2a_fam00.mol2 top pose for m2a

This simple serotonin example will be used to further discuss the QuanSA model selection protocol. The select
procedure makes use of model training quality statistics (reported in the three gm*x-trainreport.txt files) and
performance on a holdout set of molecules (reported in the three qtest*stats-eval.txt files). The holdout
molecules were not used directly in the initial model building. In the serotonin example, three alignment cliques were
used to generate three models. Each of the three models were then used to score a set of holdout molecules. Two text
files, ModelList and ModelHoldoutList, were manually generated. These files contained the names of the three
resulting models, gm0 [012], with ModelHoldoutList also containing the corresponding qtest*stats-eval.txt
file names. The select command uses either ModelList or ModelHoldoutList as input and generates a model
quality score that is a product of p values for each model listed. The score is labeled Tr_Score for information based
only on the training data and Tr+H_Score for information that combines that with performance on a holdout set.

The former score is the multiplicative product of the normalized values for the parsimony, KTau, and average error,
and provides a relative ranking of model performance. As shown below in gmholdout-selectreport.txt, the
qm04 model had the highest score from the training statistics (Tr_Score 0.278) and from the holdout set (Tr+H_Score
0.219). Superior predictive performance of models with the highest model selection scores has been observed for
many targets with much larger datasets (not shown). While these scores can be generated purely from the training
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data alone, use of a holdout set for model selection is still advised. Overfitting is possible in constructing QuanSA
models, as is the case with any machine-learning procedure.

The select command, illustrated below, can make use of both training statistics and performance on a holdout set.

# Directory: examples/quansa/serotonin
# File contents: ModelHoldoutList
qm00 qtestOOstats-eval.txt
qm01 qtestOlstats-eval.txt
qmO02 qtestO2stats-eval.txt
qm03 qtestO3stats-eval.txt
qm04 qgtestO4stats-eval.txt
# The select command combines information on model quality to help
# adjudicate which model or models are most likely to be predictive
> sf-quansa.exe select ModelHoldoutList qmholdout
# Key Output Files
# gmholdout -selectreport.txt Human-readable file summarizing model quality
# gmholdout -selectreport.tab Tab-delimited summary table
# Excerpted gmholdout-selectreport.txt:
Model 000: qmO0O0 qtestOOstats-eval.txt # Indicates reading of model qmO0O, with
Model 001: gmO1 qgtestOlstats-eval.txt # holdout set of molecules specified.
# Probabilistically normalized statistics for each model and a summary score (Tr+H_Score)

Model N. Tr_Score Parsim pPars TrTau pTrTau TrErr pTrErr Tr+H_Sco TeTau pTeTau TeErr pTeErr

qmO00 O 0.045954 0.714 0.665 0.900 0.494 0.443 0.140 0.013328 0.882 0.593 0.516 0.489
qmO01 1 0.019393 0.628 0.028 0.951 0.746 0.231 0.945 0.008861 1.000 0.828 0.497 0.552
qmO02 2 0.175949 0.724 0.757 0.950 0.742 0.396 0.313 0.023355 0.778 0.347 0.549 0.382
qm03 3 0.004841 0.728 0.790 0.756 0.027 0.416 0.230 0.000014 0.556 0.042 0.690 0.072
qmO04 4 0.278472 0.698 0.496 0.949 0.738 0.301 0.762 0.219337 1.000 0.828 0.312 0.951

In constructing models for application in prospective design, it is recommended to segregate data temporally, with

training being done on an early set and some testing on an adjacent but later time window. For example, one might
train on the earliest N molecules to produce some set of models. Those models with good convergence and parsimony
might then be tested on the next M molecules, with those having the best performance used to make predictions on
as-yet-unsynthesized ligands.

Given assay data on new experimentally tested molecules, refinement of a model may proceed in two ways. Clearly,

de novo construction of a model is possible, but incremental refinement of an existing model is usually a more attractive
option, especially if the new data reflect relatively minor adjustments to prior predictions. Here, the procedure for
refinement using true activity values for m2a, mé6a, and m9a will be shown (a more complex example involving
multiple rounds of iterative refinement is shown in on the CDK?2 example).

#
#

H* H H

Directory: examples/quansa/serotonin
File Contents: Add3Data

m2a = 9.7
méa = 6.4
m9b = 7.4

sf-quansa.exe add gmO4 Add3Data pqtest.sfdb qmO4new

Key Output Files

qmO4new-trainreport.txt (Report of refinement results)
qmO4new.qmp.mol2 (Refined model and poses)
qmO4new.qml.mol2 (New learning state)

Scoring new molecules with the refined model can be done as before (specifying “qmO4new” as the model name), and
the refinement process can be iterated. The refinement process generally takes close to the same amount of time as the
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QuanSA serotonin model: Adding New Molecules

gmOoO0 final optimal poses
gmO0Onew final optimal poses

gmOO final optimal poses gmOO0new final optimal poses
pocket-field new pocket-field

Figure 6.4 Shown are the optimal final training poses for the original model (salmon) and the optimal final poses after
refining the model with 3 new serotonin ligands (light blue). Note that the newly refined pocket-field is different from the
original pocket-field (shown, from Figure 6.1).

initial model building in order to allow for new data to significantly influence the model. Figure 6.4 shows the subtle
changes in model refinement relative to a starting original model.

# Look at the results from the serotonin QuanSA qmO0O model as an example:
pym disp.pml

A more complex example involving the GABA 4 Receptor benzodiazepine binding site is also included in the
examples:

# Directory: examples/quansa/bzr
# File Contents: RunFull
# BZR Example from first QuanSA paper \citep{cleves2018}.

# Use ForceGen to generate conformer pools of the train/test sets
sf-tools.exe -pquant forcegen train.mol2 pqtrain
sf-tools.exe -pquant forcegen test.mol2 pqtest

# copy the bzr multiple ligand alignment
# Version 5.173 --> mesim-pg-12.mol2 was copied as good-align.mol2
cp ../../similarity/multiple_alignment/bzr/good-align.mol2

# We can drive the alignment toward a particular core alignment
sf-quansa.exe -clknown good-align.mol2 init TrainData pqtrain.sfdb qgm
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sf-quansa.exe build gm-init-00 qmOO
sf-quansa.exe score gmOO0 pqtest.sfdb test00
sf-quansa.exe eval testOO-report.txt TestData qmOO

sf-quansa.exe build gm-init-04 qmO4
sf-quansa.exe score qmO4 pqtest.sfdb test04
sf-quansa.exe eval testO4-report.txt TestData qmO4

sf-quansa.exe select ModelList sel
# Version 5.173 --> gqmO4 is the best model from the run using good-align as known poses.

# Key Output Files
# sel-selectreport.txt (Report of variant model performance)

The results parallel those presented in the introductory QuanSA paper [1].

6.8 MORE SOPHISTICATED ALIGNMENT GENERATION

Ligand Diversity for Alignment Constraint: The mutual ligand alignments form the core of the learning process for
QuanSA, and the quality of the alignments, and the degree to which they mimic the relative molecular alignments seen
biologically, are the biggest factor influencing the predictive power of QuanSA models, especially on new scaffolds.

It is frequently the case that a number of ligands are known to be competitive with a series that is the subject of a
lead-optimization exercise. Often, these compounds may have different underlying scaffolds, but activity data may not
necessarily be available. Such compounds can be productively utilized within QuanSA to help derive more accurate
hypotheses for ligand alignments. One way to do this is as follows (using CDK2 as an example target):

# Directory: examples/quansa/cdk2/Hypo-Denovo
# RunMakeHypo is the script to generate the multiple ligand alignment

# Prepare the CDK2 ligands using sf-tools/forcegen

# The file "hypo.smi" contains the SMILES strings for 3 CDK2 ligands
0=5(C1=CC=C(NC2=NC(0CC3CCCCC3)=C(N=CN4)C4=N2)C=C1) (N([H])C)=0 m42
0=S(C1=CC=C(NC2=NC(0CC3CCCCC3)=C(N=CN4)C4=N2)C=C1) (CC[NH2+]C5CCCC5)=0 m66
0=C1NC2=C(C(SC=N3)=C3C=C2)/C1=N/NC4=CC=C(CS(=0) (NC)=0)C=C4 lig-1ke6

> sf-tools.exe fgen3d hypo.smi hypo3d
> sf-tools.exe -pquant forcegen hypo3d.mol2 hprep

# Use the Similarity module to build a de novo hypothesis with no structural information
> sf-sim.exe mult_esim hypo-mol-names hprep.sfdb hypo

# Excerpted hypo-log:

Final hypo 00 prob: 0.7229
m42 strain: 4.1 kcal/mol
m66 strain: 2.9 kcal/mol
lig-1ke6 strain: 2.6 kcal/mol

Final hypo 01 prob: 0.704865 (min_rms = 3.24)
m42 strain: 2.0 kcal/mol
m66 strain: 1.4 kcal/mol

lig-1ke6 strain: 2.3 kcal/mol

Final hypo 02 prob: 0.681283 (min_rms = 1.48)
m42 strain: 0.7 kcal/mol
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QuanSA CDK2 de novo Model
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Figure 6.5 The selected de novo mutual alignment for 3 CDK2 ligands (hypo-01.mol2, cyan), the final optimal poses of the

training molecules (green), and the predicted pose of a test molecule with the interactions with the pocket-field (magenta).

m66 strain: 1.1 kcal/mol
lig-1ke6 strain: 3.4 kcal/mol

Final hypo 03 prob: 0.637590 (min_rms = 2.32)
m42 strain: 3.1 kcal/mol
m66 strain: 0.5 kcal/mol

lig-1ke6 strain: 3.3 kcal/mol

Final hypo 04 prob: 0.629990 (min_rms = 1.80)
m42 strain: 2.4 kcal/mol
m66 strain: 2.1 kcal/mol

lig-1ke6 strain: 3.1 kcal/mol

> cp hypo-01.mol2 ../QuanSA-Denovo/given-denovo.mol2

# Look at the chosen and other de novo hypotheses:
pym disp.pml

The Similarity module mult_esim procedure builds pose cliques without requiring activity data for the ligands
under consideration, and it tries to simultaneously maximize mutual similarity, minimize strain energy, and minimize
the ratio of the volume of the union of the ligands compared with the volume of the single largest ligand (see the
Similarity module chapter for additional details). Here, ten alignment cliques were produced, all of which are quite
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similar to one-another. Given that we are building a potency prediction model, consideration of ligand energetics
within the context of the other values should receive special attention. Here, hypo-00 had the highest probability and
the lowest MMFF strain energy values for the three ligands. This mutual alignment is shown in Figure 6.5. Enough
is known about the binding of CDK2 inhibitors from the substituted guanine series and the other ligands in Figure 6.5
to say that the correspondence of parts between the different ligands is correct in this pure similarity-based alignment.
The conformation of the left-hand substituent is slightly different than the bound conformations. Nonetheless, hypo-01
could be used to guide model building by using it as the given-clique with the —~clknown parameter and the init
command. Many of the cliques generated here from the hypo procedure have similar superimpositions and strain
energies. In a real-world exercise, the top few hypos should be used to build QuanSA models that could then be
compared using the select or xval procedures.

Directory: examples/quansa/cdk2

Prepare the ligands for QuanSA

The file cdk2.mol2 is a multi-mol.2 of 80 cdk2 ligands

RunPrep script:
sf-tools.exe -pquant forcegen cdk2.mol2 pqcdk2

Vo oH H H

Directory: examples/quansa/cdk2/QuanSA-Denovo

Generate full alignment cliques

using similarity-derived poses to guide the alignment

RunInit script:

sf-quansa.exe -clknown given-sguided.mol2 init TrainData pqcdk2.sfdb qgm

VvV oH H O R

Build 5 alternative models

RunBuild script:

sf-quansa.exe build gm-init-00 gqmOO
sf-quansa.exe build gm-init-01 qmO1
sf-quansa.exe build gm-init-02 qm02
sf-quansa.exe build gm-init-03 qmO03
sf-quansa.exe build gqm-init-04 qmO4

V V. V V V # #®

H*

Select a model
RunSelect script:
> sf-quansa.exe select ModelList qm

H*

Score the test molecules (using all models here/could use only winner model)
RunTest script:

sf-quansa.exe -namelist TestNames score qmO00O pgcdk2.sfdb qtest00
sf-quansa.exe eval qtestOO-report.txt TestData qtestOOstats

vV VvV # #

v

sf-quansa.exe -namelist TestNames score qmOl1 pgcdk2.sfdb qtestO1l
> sf-quansa.exe eval qtestOl-report.txt TestData qtestOlstats

> sf-quansa.exe -namelist TestNames score qmO04 pqgcdk2.sfdb qtest04
> sf-quansa.exe eval qtestO4-report.txt TestData qtestO4stats

# Display the pocket-field
sf-quansa.exe disp gmOO dispO0O

# Display the interactions with the pocket-field for a Test molecule
sf-quansa.exe paint gqmOO qtestOO0O-topfam-toppose.mol2 paint m29

# Visualize the model, the given-denovo poses, the pocket-field, and the poses of the test
molecules.
# pym disp.pml

Direct Structural Guidance for Alignment Constraint: We have shown that using direct knowledge of protein
structures to guide model building leads to both improved quantitative prediction of activity as well as improvements
in pose prediction from the QuanSA precursor algorithm, QMOD, over docking alone [23] . QuanSA should exhibit
similar behavior. This can be done using the docking protocols described in the Docking module chapter, as follows.
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# Directory: examples/quansa/cdk2/Hypo-SG

3 # Prepare conformer pools for the CDK2 ligands to be docked:

19

v

sf-tools.exe fgen3d ligs.smi ligs
> sf-tools.exe -pquant forcegen ligs.mol2 pq

Use Surflex-Dock to generate protomols

Use Surflex-Dock to perform ensemble docking against five aligned proteins.

See examples/docking/protein to see the mutual alignment procedure.

PDB codes 1HOV, 10GU, 1HO1, 1KE6, and 1H1P are used here (automatically selected
using psim_choose_k).

copy and rename the prepared cluster center protein and ligands

source copy-cdk2-centers

VvV oH B O OH H R

H*

combine the crystallographic ligands into a multi-mol2
> cat ligand-0*.mol2 > PoseHints.mol2

# Build the set of protomols
> sf-dock.exe mproto ProtoList mpro

# Dock the two high-activity ligands
sf-dock.exe -pgeom -1lmatch PoseHints.mol2 gdock_list pq.sfdb mpro-targets log

v

3 > sf-dock.exe -posehints PoseHints.mol2 posefam log

Now take the top pose of the top predicted family for each of m42
and m66 and provide them to the QuanSA intialization procedure for
guidance

Copy the top poses of the top families

cp log-topfampose.mol2 given-sguided.mol2

cp given-sguided.mol2 ../QuanSA-SG

VvV VvV o H o H

H*

Look at the docking results

3 > pym disp.mol2

VvV oH H OH HH

When making use of the -clknown option, it is possible to provide multiple poses for each of the given molecules.
Where multiple poses are all sensible choices, is recommended to use all of them. The QuanSA initialization procedure
balances the needs of overall congruence among the ligands to be modeled with the other impinging constraints. Here,
only the top pose for each of the two docked molecules will be used as structural guidance for the QuanSA model
building.

Figure 6.6 shows two of the five CDK2 protein structures that were aligned and used as multi-structure docking
targets. Three amino acids (Lys33, GIn85, and Lys89) are labeled in the structures to demonstrate the significant
structural diversity exhibited by the CDK2 pocket. Figure 6.7 shows the combined top poses from the top-scoring pose
families for molecules m42 and m66 (yellow) resulting from a standard ensemble docking procedure in the context of
CDK?2 structure 1KEG6 (protein and ligand in green and teal, respectively). As mentioned earlier, the correct pose of the
guanine ligands orients the sulfonamide substituent downward where the kinase hinge is across the top of the ligands
and solvent is to the left. Here, there is slight variation in the precise poses of the pendant substituents (molecule
m42 had 5 total poses in the top-scoring pose family, and molecule m66 had 14). We will use of the well-placed top
pose ligand alignment within the QuanSA init procedure directly as “given” poses for these two training ligands, as
follows:

The ligands were prepared for QuanSA above

Directory: examples/quansa/cdk2

Prepare the ligands for QuanSA

The file cdk2.mol2 is a multi-mol.2 of 80 cdk2 ligands
RunPrep script:

sf-tools.exe -pquant forcegen cdk2.mol2 pqcdk2

H*

Directory: examples/quansa/cdk2/QuanSA-SG
> cp ../pqcdk2.sfdb

# We have docked molecules m42 and m66 and combined their
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QuanSA CDK2 Structure-guided Model: Docking Targets

Figure 6.6  Shown in thin sticks are two of the five CDK2 structures that were aligned and used for multi-structure docking of
two CDK2 training ligands. 1KE6 protein and native ligand are in green and teal, respectively. 1HOV protein is in salmon. Leu83
and Glu81 are the hinge region residues of which the backbone carbonyl and amine groups make hydrogen bonds with the ligand
(purple dashed lines). Note that the hinge region is tightly aligned between the two protein structures. In contrast, residues Lys33,
GIn85, and Lys89 show the significant mobility that has been observed in the CDK?2 pocket.

H*

top-scoring pose families into given-sguided.mol2

We will run a QuanSA initialization using the two molecules listed first
in the TrainData file (m42 and m66) using the poses derived from docking
RunInit script

sf-quansa.exe -clknown given-sguided.mol2 init TrainData pqcdk2.sfdb qm

7
VvV oH H

By default, up to five full alignments of the training molecules
(\texttt{gm-init*.qml.[mol2/sfdbl}) are generated

We could perform a five-fold cross-validation to establish the best clique
sf-quansa.exe xval gm-init-00 qmxv00 5

sf-quansa.exe xval gm-init-01 qmxvO01
sf-quansa.exe xval gm-init-02 qmxv02
sf-quansa.exe xval gm-init-03 qmxv03
sf-quansa.exe xval qm-init-04 qmxv04

V V. V V V & # #

oo oo

# Key Output File gmxv*-xvstats

The xval procedure uses the gm-init*.qml.sfdb as input to perform five build procedures each with a holdout
of 20% of the train ligands as a test set on which to perform full statistics. In cases of greater training molecule structural
diversity, this cross-validation procedure could provide substantially better results than the select procedure which
was described above in the serotonin example.

Figure 6.8 shows the m42 and m66 top poses derived from docking (cyan) that were part of the given poses to guide
the generation of the initial full pose clique for 30 CDK2 training ligands, gm-init-00.qml.mol2 (light blue). The
variation of the full set of training ligands falls nicely within the envelope that was explored by the docked ligands.
Proceeding to build models from this particular alignment is as follows.

# Directory: examples/quansa/cdk2/QuanSA-SG
> # File Contents: TrainData (abbreviated and annotated)
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QuanSA CDK2 Structure-guided Model: Docked Ligands as a Guide

CDK2 1KES® protein and ligand
given-sguided.mol2

Figure 6.7 Shown is the docking result for two CDK2 training ligands, m42 and m66 (yellow) in the context of the CDK2 pocket
(1KE6 protein and ligand in green and teal, respectively). Shown are the top poses from the top-scoring pose families for m42 and
m66 combined to generate given-sguided.mol2 (yellow).

m42
4 mé6

]
~
o N

# Preferred method is to build 5 alternative models
# RunBuild script:

> sf-quansa.exe build gm-init-00 gmOO

> sf-quansa.exe build gm-init-01 qmO1

> sf-quansa.exe build gm-init-02 qm02

QuanSA CDK2 Structure-guided Model: Guided Clique Generation

{ given-sguided.mol2
gm-init-00.gml.mol2

Figure 6.8 Shown in cyan are the m42 and m66 top poses derived from docking that were used as given poses
(given-sguided.mol2) to guide the generation of the full initial pose clique, gm-init-00.qml.mol12, for 30 CDK2 training
ligands (light blue).
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QuanSA CDK2 Structure-guided Model: Final Optimal Poses and Model

gme-init-00.gml.mol2
gm00.gmp.mol2

gqm00.gmp.mol2 gm00.gmp.mol2
pocket-field

Figure 6.9 Shown are training molecule alignments and the final derived CDK?2 pocket-field from the structure-guided QuanSA
protocol for model qmO0. The init procedure produces a full clique of the top poses of all training ligands, gm-init-00.qml .mo12.
The build procedure generates the optimal final training poses of all 30 CDK2 ligands, qm00 . qmp . mo12, as well as the pocket-field.

» > sf-quansa.exe build gm-init-03 qm03

> sf-quansa.exe build gm-init-04 qmO4

# Select a model

# RunSelect script:

> sf-quansa.exe select ModelList qm

# Display the pocket-field (using qm0O as the winner model)
sf-quansa.exe disp qmOO0 dispO0O

Visualization of a particular pocket-field requires running the disp command on the corresponding QMP mol2
file (e.g. qm00.qmp.mol2). Note that the QMP file contains the final optimal poses of the training ligands and the
pocket-field in a non-visualizable form.

The qmOO-trainreport.txt shows that model qmOO has high parsimony, a high Kendall’s Tau, and a low average
error. Figure 6.9 shows the final model along with the optimal poses for the 30 training ligands. The specific field
interactions that drive the activity predictions correspond in many cases directly with protein atoms that are know to
be critical for CDK2 inhibition [23]. Figure 6.9 also helps to illustrate the parsimony concept. Here, all of the active
molecules share similar dispositions of not just their central scaffolds, but also of their pendant substituents. Where
there are, for example, amine-containing substituents of the sulfonamide at left, they tend to find optimal positions
for interaction with the model in congruent positions. Figures 6.10 and 6.11 show all of the training molecules and
training molecule m42 (gray) in the context of the CDK2 pocket. Figure 6.11 includes the interaction sticks which
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QuanSA CDK2 Structure-guided Model: Final Optimal Poses of Train Mols

CDK2 1HO0V protein
gm00.gmp.mol2

Figure 6.10 The final optimal poses of the training molecules (green) shown in the context of the CDK2 protein.

mimic the ligand interactions with CDK2 residues Leu83 and Glu81 in the hinge region, Lys33 of the catalytic triad,

and Asp86 and Lys89.

6.9 PREDICTIONS ON NEW MOLECULES: CONSIDERING NOVELTY AND CONFIDENCE

The following illustrates testing the 50 molecules present in the file cdk2/TestList:

# Directory: examples/quansa/cdk2
# File Contents: TestNames

m02

m03

m04

m07

Score all 50 test molecules (using qmO0 as the winner model)
RunTestRefine script:

cp TestNames qmO0O-roundO-TestNames

ROUND 0: TEST model against qmO0O-roundO-TestNames

VvV o# VvV oH

# Key Output Files
qm00-test -report.txt Report of scoring results
# qmOO-test-topfam-results.mol2 Top pose families for test mols

H*

# Excerpt of qmOO-test-report.txt: (top scoring mols)

mol pred pconf pexcl pnov tmol maxsim bexcl
m29 8.8900 0.7310 0.4290 0.2020 m42 0.9120 -0.0000
m64 7.1800 0.6200 0.6180 0.3800 m76 0.8760 -0.0000

sf-quansa.exe -namelist qmO0O-round0-TestNames score gmOO pqgcdk2.sfdb qmOO-test

jointsim
9.4380
9.4500
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QuanSA CDK2 Structure-guided Model: Final Optimal Pose Train m42

CDK2 1HOV protein
gm00.gmp.mol2 m42

Figure 6.11 The final optimal pose of training molecule m42 (green) is shown in the context of CDK2 protein 1HOV (salmon).
The m42 interaction sticks mimic the ligand interactions with CDK2 residues Leu83 and Glu81 in the hinge region, Lys33 of the
catalytic triad, and Asp86 and Lys89.

m46 8.5300 0.3560 1.0000 0.5470 m42 0.8600 -0.0000 9.1060
m44 7.8100 0.8170 0.4170 0.0630 m42 0.9230 -0.0000 9.9650
m45 6.7500 0.9200 0.3610 0.0960 m51 0.9500 -0.0000 9.9130

The report provides a prediction of activity along with multiple pieces of information that compare each new ligand
to the training set. The first three columns after the activity prediction yield probabilistically normalized measures of
confidence, exclusion envelope penetration, and novelty. pConf: This is a normalized score reflecting the degree to
which a molecule that has been scored has a final optimal top pose that is highly similar to a single training molecule.
Molecules with high confidence have at least one close near-neighbor in the training set. The subset of molecules
with relatively high confidence (the default threshold is set at > 0.35, but this is not a hard and fast value), usually
have lower prediction error values. pExcl: This is a normalized score that measures whether a molecule in its final
optimal pose protrudes beyond the full envelope of the training molecules. If the protrusion is small, a high pExcl
value (> 0.95) might indicate that the molecule is sticking into space that has not been explored. pNov: This is the
most complicated of the metrics. It is looking at what types of functionality have been explored by the union of the
training molecules. So, it is possible to see a molecule with a low pConf value because there is not a single training
mol that looks like it. But the same molecule might score as having low novelty if, for example, the union of two
training molecules covers it. The new molecule might have an acid on the left and a large hydrophobic chunk on the
right. You might have training molecules that align well with it but where one has the acid and one has the grease (but
not a single mol with both). Low novelty is considered to be < 0.85. The most similar train molecule is in column 6
with the raw similarity score (scale 0—1) in column 7 (maxsim).

Figure 6.12 shows the top single pose of test molecule m29 (magenta) in the context of the final optimal pose of
the nearest neighbor train molecule m42 (green). The core of the molecule is similarly situated to that of the training
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QuanSA CDK2 Structure-guided Model: Scoring New Molecules

Test mol m29
Exp pKi= 8.3
Pred pKi = 8.9

gmOo0 final optimal pose train m42
gmOo0 test top pose m29

i

gmOo0 final optima;l pose train m42
gmO0O test top pose m29

gmOoO0 final optimal pose train m42
gm0O test top pose m29

interactions of m29 with pocket-field pocket-field

Figure 6.12  Test molecule m29 (magenta) was correctly identified as having relatively high activity. Here the top pose of m29
is shown with the most similar training molecule, m42 (green), with the m29 interactions with the pocket-field and in the context
of the pocket-field.

ligand m42. Of the five top-scoring test molecules, m45 was predicted with the highest confidence, which stemmed
from high similarity to the optimal pose of training molecule m51. The molecules for which pNov < 0.85, pConf >
0.35, and pExcl < 0.95 will tend to have the highest level of predictive accuracy. For the CDK2 example, as can be
seen in qmOO-test-report.txt, 12 of the 50 test molecules penetrated the space beyond the training ligand envelope and
7 molecules had high novelty. Nonetheless, as seen below, the test activity predictions were good with an average
error less than 0.5 log.

# Directory:
> # File

m02
m03
m78
m80

examples/quansa/cdk2

Contents: TestData

4.
.3

4

6.
4.

3

7
9

> sf-quansa.exe eval gmOO-test-report.txt TestData qmOOstats

# Key Output File: qmOOstats-eval.txt

# File contents: gmOOstats-eval.txt

Stats for all the mols.
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Number of Mols 50
95.00% Confidence Interval define by CI_Low and CI_High, with 1000 resamples.

Stat Value CI_Low CI_High
KTau 0.742 0.609 0.866
R 0.862 0.759 0.944
R2 0.743 0.577 0.892
AvgErr 0.445 0.315 0.592
RMSE 0.664 0.444 0.858

Linear Fit: slope 1.039718 (xint 0.136753 yint -0.142184)
K_Tau pval = 0.00000, estimated using 100000 iterations.

Look at the results from the cdk2 QuanSA example:
Display the interactions with the pocket-field for a Test molecule
sf-quansa.exe paint gmOO0 gmOO-test-topfam-toppose.mol2 paint m29

Visualize the model, the given-sguided poses, the pocket-field, and the poses of the test
molecules.
> pym disp.pml

6.10 ITERATIVE MODEL BUILDING AND REFINEMENT

Generally speaking, with molecules exceeding a probabilistic novelty of 0.85, inaccurate predictions should be
expected. However, explicit inclusion of such molecules for model refinement has been shown to be helpful,
especially with respect to increasing the structural diversity of highly active molecules over the course of iterative
model-guided lead optimization [20]. Beginning with the structure-guided CDK2 model just constructed, we will see
how to iteratively select new molecules and refine models over time, as new data are exposed. In this example, as
seen from the information produced by the xval procedure and through visualization of the chosen model optimal
training ligand poses, we see that both model convergence and parsimony are good. However, the model construction
process is complex, and the endpoint sought involves a convergence criterion that requires that the scores for molecules
in their optimal poses be close to the experimental values. Especially in cases where molecules are highly flexible,
convergence may be difficult. In this example, the mean error of fit for the training molecules approached a level
comparable to expected levels of assay noise, with extremely high Kendall’s Tau. In cases where the combination of
convergence and parsimony are not acceptable, models may be re-refined from the point at which they were evaluated
using the add command. In cases where convergence with a particular alignment hypothesis remains elusive, the user
is encouraged to consider alternate alignment hypotheses. Consideration may also be given to the possibility that some
of the underlying assumptions for model building are not being met, particularly that the molecules are all binding in
the same target pocket and that the activity values can be interpreted as being related to the free energy of binding.

Many factors generally influence the selection of molecules to synthesize and assay: quantitative estimates of
activity, confidence, and novelty can all be brought into consideration. Of course, visual analysis of predicted
binding modes, especially when structural variations begin to be substantial, also can be very helpful in making
candidate selections. For the example being discussed, summary information is in qn0O-test-report . txt, with the
corresponding model and the corresponding optimal training poses in qm00O . gqmp .mo12. The top scoring pose families
of the test molecules are in qm0O-test-topresults.mol2. Iterative refinement of model 1 is discussed here, using
the top 5 molecules (based on potency predictions alone) being selected for “synthesis” and “assay.”

The following summarizes the iterative refinement process for one round, beginning with scoring all 50 molecules
with the initial model:

# Directory: examples/quansa/cdk2

> cp TestNames gmO0O-roundO-TestNames
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# ROUND O: TEST model against qmOO-roundO-TestNames (all 50 holdouts)
> sf-quansa.exe -namelist gm0O-round0-TestNames score gmOO pgcdk2.sfdb gqmOO-test
> sf-quansa.exe eval gqmOO-test-report.txt TestData qmOOstats

# The next commands grab the 5 best predicted mols, and make a new train and new test set
> tail -n +2 qmOO-test-report.txt | sort -r -k 2 | awk ’{print $1}’ | head -5 >

qmO00 -round0-winners
> grep -w -f gqmOO-round0-winners TestData > gmOO-roundO-NewTrainData

> > grep -w -f qmO00-round0-winners TestNames > qmO0O-roundO-NewTrainNames

> grep -w -v -f gmO0O-roundO-winners qmOO-round0-TestNames > qmOO-roundl-TestNames

# Now REFINE qmOO using the 5 predicted winners --> qmOOril
> sf-quansa.exe add qm00 gmOO-round0O-NewTrainData pqcdk2.sfdb gmOOri1

# ROUND 1: TEST model against qmOO-roundl-TestNames
> sf-quansa.exe -namelist gmOO-roundl-TestNames score gmOOrl pqcdk2.sfdb qmOOrl-test
> sf-quansa.exe eval gqmOOrl-test-report.txt TestData qmOOrilstats

# The next commands grab the 5 best predicted mols, and make a new train and new test set
> tail -n +2 qm0OOrl-test-report.txt | sort -r -k 2 | awk ’{print $1}’ | head -5 >
qmO0 -roundl -winners
> grep -w -f gmOO-roundl-winners TestData > gmOO-roundl-NewTrainData
> grep -w -f qmOO-roundl-winners TestNames > qmOO-roundl-NewTrainNames
> grep -w -v -f gmOO-roundl-winners qmOO-roundl-TestNames > qmOO-round2-TestNames

# Now REFINE qmOOrl using the 5 predicted winners --> qmOOr2
> sf-quansa.exe add qmOOrl qmOO-roundl-NewTrainData pqcdk2.sfdb qmOOr2

# ROUND 2: TEST model against gmOO-round2-TestNames
> sf-quansa.exe -namelist gmOO-round2-TestNames score gmOOr2 pqcdk2.sfdb qmOOr2-test
> sf-quansa.exe eval gqmOOr2-test-report.txt TestData qmOOr2stats

# The next commands grab the 5 best predicted mols, and make a new train and new test set

> tail -n +2 gqm0Or2-test-report.txt | sort -r -k 2 | awk ’{print $1}’ | head -5 >
qmO0-round2-winners

> grep -w -f qmOO-round2-winners TestData > gqmO0O-round2-NewTrainData

> grep -w -f qmOO-round2-winners TestNames > qmOO-round2-NewTrainNames

> grep -w -v -f gmOO-round2-winners qmOO-round2-TestNames > gm0O-round3-TestNames

# Now REFINE qmOOr2 using the 5 predicted winners --> qm0OO0r3

> > sf-quansa.exe add qm00Or2 qmOO-round2-NewTrainData pqcdk2.sfdb qmOO0r3

# ROUND 3: TEST model against gmOO-round2-TestNames
> sf-quansa.exe -namelist gmO0O-round3-TestNames score gqmOOr3 pqcdk2.sfdb qmOOr3-test
> sf-quansa.exe eval gmOOr3-test-report.txt TestData qmOOr3stats

# The next command grabs the 5 best predicted mols
tail -n +2 qm0Or3-test-report.txt | sort -r -k 2 | awk ’{print $1}’ | head -5 >
qmO0-round3-winners

v

cat gqm0O-round [0123] -winners > gmOO-all-winners

grep -w -f qm0O-all-winners TestData | awk ’{print $3}’ > gmOO-all-selected-vals

grep -w -v -f gm0O-all-winners TestData | awk ’{print $3}’ > gqm0O-all-nonselected-vals
cat TestData | awk ’{print $3}’ > gm00O-all-vals

vV V. V VvV

H*

This will generate performance plots:
> source RunPlotO

Scripts to run the refinement process automatically for three initial alignments are in RunBuildTestRefine[012]. The
process of selection and refinement shown above was repeated, producing progressively refined models, with the final
model containing a total of 20 original test molecules being selected, five from each of four successive models. Figure
6.13 shows the behavior of the original QuanSA model on the 50 test ligands (Round 0) and Rounds 1, 2, and 3 of
refinement testing on the remaining 45, 40, and 35 test molecules, respectively. As seen in the qmOO*stats-eval
output files, all four models produced high rank correlation performance and had absolute prediction error of roughly
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Figure 6.13 The original QuanSA CDK2 model and rounds 1-3 of the iterative QuanSA procedure produced solid correlations
between predicted and experimental activities and identified the potent molecules.

0.4 pk; units. Note that all inhibitors from the 50 initial holdouts with activity > 7.0 were correctly selected by the
modeling process.

Figure 6.13 shows plots of the performance of the initial QuanSA model (top left) along with the performance of
three iteratively refined models (procedure discussed below). We see that the predicted top-scoring molecules are part
of a cluster of nominally overpredicted molecules that are all relatively high in activity. The following discussion
shows repeated selection of the top five predicted molecules for incorporation into newly refined models.

Figure 6.14 shows the distributions of the 20 selected (top five for each model) versus the 30 unselected molecules
from the set of 50 for iterative refinement. The distribution of experimental activities are shown in green for selected
inhibitors and purple for unselected ones. The distributions reflect selection of the top five predicted molecules for
each of the four models. Selection of an additional five molecules from the final model would identify all but one of
the inhibitors with sub-micromolar inhibition constants.
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CDK2 model 0: Selection Performance

Count

Chosen Molef;ules

Unchosen 3 Molecules /—x
0 | | N A
3 4 5 6 7 8 9

Experimental Activity

Figure 6.14 The distributions of selected (green, 20 molecules) versus non-selected (purple, 30 molecules) molecules were very
different.

6.11 USING ADDITIONAL INFORMATION TO INFLUENCE A MODEL

There are cases where more might be known about either the ligands to be modeled or the target itself than illustrated
above. As with the Docking and Similarity modules, torsional and positional constraints can be made explicitly using
the —torcon and —-poscon options, along with parameters that modify the strength of the constraints and the amount
of wiggle for each type of constraint. Here, as with the other modules, the Tools module forcegen procedure should
be used prior to making use of these options within QuanSA.

Using such constraints can help overcome limitations in purely agnostic similarity-based alignment procedures
and help to test specific hypothesis about the relationship between molecular structural variation and activity. It is
important, however, for users to bear in mind that, even though one’s intuition might be that something binds “this”
way, it may actually bind in a different orientation depending on its substituents.

6.12 LARGE DATA SETS AND SKEWED ACTIVITY DATA

The foregoing simple serotonin example used a completely automated method for alignment generation, and models
were built from all alignments that were produced. In real-world applications where no information exists to help
define desirable alignment hypotheses, one must take a brute-force approach that relies on the molecular similarity
engine to identify alternative alignments. In such cases, it is strongly recommended that the user split any initial set
of molecules into separate training ligands and holdout ligands to aid in model selection (as described above).

Take for example, a lead optimization experiment that resulted in a set of 2000 molecules with an overall activity
range of pK; 4.0-9.0, but where the activity distributions is over-represented in the 6.0-7.0 range. There are three
issues. First, constructing a QuanSA model with 2000 training ligands is not currently feasible, so a model must be
built incrementally. Second, one needs to identify an informative subset from which to begin the training process.
Third, one needs to refine the model in order to cover the larger set of 2000 molecules.
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For the initial model, 200 molecules is a reasonable number for constructing the training and holdout sets. Random
selection of the set of 200 risks having many molecules with similar activity values, which provides little discriminatory
power for QuanSA. A better selection procedure involves binning. For this example, given the 5 logs of activity range,
there would be 5 bins of molecules based on activity (4-5, 5-6, 6-7, 7-8 and 8-9). Within each bin, random selection
of 40 molecules would yield an overall subset of 200.

This 200 molecule set would be split 2/3 to 1/3 into 134 for training and 66 for a holdout model selection set.
The set of 200 should be sorted by activity highest to lowest and every 3rd molecule moved to the holdout set. The
resulting 134 molecule training set and 66 molecule holdout set would therefore have similar activity distributions.
Multiple QuanSA models would be built and then select would be used to select the best models. The remaining
1800 molecules would be scored using the best models and perhaps 50 of those molecules with the largest errors could
be used to refine the models. The premise of this refinement protocol is that the largest errors likely reveal structures
not well represented in the original model, but when added during model building result in highly predictive models.
Iteration of this procedure would produce a model that covers the data within the 2000 molecule series, but which
relies on only a few hundred to do so.

6.13 GABA_ R BENZODIAZEPINE BINDING SITE EXAMPLE

The example presented here utilizes a benzodiazepine (BZR) dataset from the classic QSAR benchmark of Sutherland
et al. [24]. In the previous chapter on similarity, the entire set of 147 BZR ligands was aligned to a 4-molecule mutual
alignment using the esim_1ist command as shown in Figure 4.8. Here, the dataset is used as the original 98 training
ligands and 49 test ligands, specifically for the goal of purely ligand-based affinity prediction in a multi-scaffold case.
BZR was one of many target sets in the introductory QuanSA paper used to show the accuracy and broad applicability
of the method [1]. BZR ligands are agonists of the GABA 4 receptor, a complex, membrane-bound, hetero-multimeric
ligand-gated ion channel. No crystal structures of this target were used in these purely ligand-based QuanSA models.

# Directory: examples/quansa/bzr/
# See file: RunAll

# Protonate the molecules sensibly

s # sf-tools.exe prot bzr-3dgsar-mndo-train.mol2 train

# sf-tools.exe prot bzr-3dgsar-mndo-test.mol2 test
# Use ForceGen to search the train/test sets
# sf-tools.exe -pquant forcegen train.mol2 pqtrain

# sf-tools.exe -pquant forcegen test.mol2 pqtest

# copy the bzr multiple ligand alignment

3 # cp ../../similarity/multiple_alignment/bzr/good-align.mol?2

5 # We can drive the alignment toward a particular core alignment

> sf-quansa.exe -clknown good-align.mol2 init TrainData pqtrain.sfdb qm

# OR, we can just let things run de novo
sf-quansa.exe init TrainData pqtrain.sfdb qm

**+

Build the models and then score the blind test molecules
sf-quansa.exe build gm-init-00 qmOO

sf-quansa.exe score gmOO0 pqgtest.sfdb test00
sf-quansa.exe eval testOO-report.txt TestData qmOO

vV V VvV #

# Repeat for other initial alignments 01 to 03

> sf-quansa.exe build gm-init-04 qmO4

> sf-quansa.exe score qmO4 pqtest.sfdb test04

> sf-quansa.exe eval testO4-report.txt TestData qmO4

> sf-quansa.exe select ModelList sel
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# Display the pocket-field

5 > sf-quansa.exe disp qmO4 dispO4

7 # Display the interactions with the pocket-field for a Test molecule

> sf-quansa.exe paint gmO4 testO4-topfam-toppose.mol2 paint Rol1-1465

A multiple ligand alignment of 4 topologically-diverse training ligands (good-align.mol2) was performed to
seed the initial alignments of the full set of training ligands. Five QuanSA models were built and then used to
score the test ligands. The selection process showed model qm04 with the highest normalized probability score (see
sel-selectreport.tab).

Figure 6.15 shows the initial multiple ligand alignment (cyan), and the final poses of the full set of training
molecules (green) alone and with the pocket-field. QuanSA learns from activity data, and during the learning process,
the alignment of the training molecules is optimized according to the evolving model. So, the final optimal ligand
alignments are different than when using similarity alone.

Also shown in Figure 6.15 is the predicted pose of test molecule Ro11-1465 (magenta) relative to the pose of a
training molecule with similar activity, Ro16-4019 (green). The sticks represent the interactions of Ro11-1465 with
the pocket-field both in magnitude and in type of interaction. QuanSA yielded statistically significant predictions for
both the in-model test subset and the full blind test. As seen in qmO4-eval.txt, for the in-model and full test set
predictions, respectively, Kendall’s Tau was 0.69 and 0.52, and MAE was 0.41 and 0.56.

Another BZR test set was curated from a large number of BZR ligands (n=1158) in ChEMBL. Although the
BZR QuanSA model was constructed from canonical BZR ligands such as diazepam and alprazolam, the model was
predictive on for example, pyrazolo-pyridine esters, a significant scaffold leap [1].

6.14 CONCLUSION

The key considerations in employing QuanSA predictive modeling revolve around the relationship between the physical
models that are constructed and the degree to which those models represent a reasonable approximation to reality.
When choosing from among different initial molecular alignment hypotheses, one should make use of quantitative
measurements like the hypothesis scores or the convergence/parsimony of the derived models. But, to the extent that a
user may have additional information, it can be very helpful to use it. For example, the known bound configuration of
a particular inhibitor may provide an excellent hint as to which of multiple hypotheses is sensible (rigid alignment and
similarity scoring to the different alignment hypotheses can be used to assess this). If a modeled structure of the protein
site is available, multiple variants can be used as the target of docking in order to establish whether an ensemble of
poses of one’s training ligands looks like a particular alignment hypothesis. In the case of congeneric molecular series,
where extrapolation beyond the series is not required, these choices become somewhat less important. However, when
generalization and SAR transfer to new chemical series matters, the closer the QuanSA model approaches the correct
physical configuration, the better the performance will be.

The process of model construction, testing, and refinement requires very simple commands from the user to be run
in a default mode, without requiring much in the way of choice from a user. However, it is possible for a user to make
use of more complex workflows that combine aspects of known or modeled protein structures as well. The goal with
the QuanSA approach is to make use of as much information as is known in order to produce models that approach the
causal underpinning of the binding events that lead to molecular activity. The extent to which a user is able to meet
this goal will influence the performance of the resulting models.

6.15 RECOMMENDED QUANSA OPTIONS

The following covers the QuanSA options that are recommended for user variation. Each of the options is accessed
by specifying the option to one of the core QuanSA commands.
For the init command, the following options are useful in controlling the initialization process:

-cIlnmols <value>: Sets the number of molecules to select for core multiple-alignment (default = 10).
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QuanSA BZR Ligand-based Model

Test mol Ro11-1465

Exp pKi=8.9
Pred pKi = 8.8
L]
.e ]
gmO04 final optimal poses all train gmO04 final optimal pose train Ro16-4019
pocket-field qmO04 test top pose Ro11-1465

interactions with pocket-field

Figure 6.15 Upper left, the multiple ligand alignment good-align.mol2 (cyan) that was used to seed the alignment of the
training molecules. Upper right and lower left, the final poses of the full set of training molecules (green) alone and in the context
of the pocket-field, respectively. Lower right, the predicted pose of test molecule Ro11-1465 (magenta) relative to the final pose of
a train molecule with similar activity, Ro16-4019 (green). The sticks show the interactions with the pocket-field.

-clselwin <value>: Activity window from most active mol for which to select first N mols (default = 2.5).

-clrms <value>: During initial alignment clique generation, this value controls how close alternative pose
groups must be in order to be considered separate. Increasing this value will produce a smaller number of
cliques with coarser structural variation (default = 0.1).

-clknown <poses.mol2>: Used with a multi-mol2 file that contains molecular poses to guide the construction
of the resulting full cliques. This can be used to specify, for example, a known bound pose of a ligand or many
plausible docked alternatives. Also, it may be used to specify a carefully worked out small set of poses from
detailed multiple alignment work within the Similarity module (default = none).

-clkthresh <value>: Sets the eSim threshold for similarity to the known poses (default = 6.5).

-clkmaxn <value>: Sets the maximum number of core poses in the first round of alignment against known
poses (default 20).

-clnmake <value>: Sets the maximum number of final initialized alignment variations (default 5).

-compress <value>: Sets the number of poses for align targets (default = 50).
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For the following options, the parameter options are inherited from the init command onward. So, specifying

something like “-torcon common _frag.mol2 -poscon warhead.mol2” to the init command will carry the parameter
specification through subsequent commands such as build and score.

-torcon <frags.mol2>: This has been described in the previous chapters along with the ~torpen and -twiggle
parameters.

-poscon <frags.mol2>: This has been described in the previous chapters along with the -pospen and -pwiggle
parameters.

-namelist <value>: List of molecule names for the score procedure (default: full sfdb).

-assay_delta <value>: Generally, all biological assays have some level of noise, and attempting to fit a model
to precise values may hamper model convergence. Values of 0.1-0.3 are typical for this parameter (the default
is 0.1).

-workdir directory-name: Directory in which all QuanSA working files are contained during long procedures.

-nthreads(*): Maximum number of threads to use. This affects initial alignment, model induction, model
scoring, and all other aspects of QuanSA use.
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CHAPTER 7

ADVANCED APPLICATIONS

This chapter covers advanced applications, including bound ligand strain estimation from real-space refined conformer
ensembles or from predicted bound poses, use of torsional restraints to guide the conformational search of complex
macrocycles, and prediction of protein-ligand binding affinities based on a combination of strain estimation and
intermolecular binding enthalpy.

7.1 XGEN PYMOL INTERFACE: REAL-SPACE LIGAND REFINEMENT

Real-space refinement of ligands within the electron density of protein-ligand complexes offers a means to quantita-
tively explore the conformational ensembles that give rise to the snapshots that are captured in diffraction experiments.
It is strongly recommended that users read the extensive paper [1] that introduced the xGen method as well as the
chapter focused on xGen usage from the command-line prior to working through this section. The prior work intro-
ducing ForceGen is also recommended [2, 3], as is the more recent work involving explicit modeling of bound ligand
strain [4, 5]. The algorithms are detailed in the referenced papers, and the PyMOL interface has been implemented to
simplify the real-space refinement process.
The five steps for refinement will be briefly summarized here:

1. Idealized density: Experimental density is converted into a spherical Gaussian approximation for the region of
space that includes the reference ligand’s Van der Waals volume plus a buffer zone of 0.5A.

2. Restrained conformational search: The normal ForceGen conformational search procedure is carried out begin-
ning with the ligand’s reference coordinates. The MMFF94sf force field is augmented with a reward for overlap
between the ligand’s density function L(x, y, z) and the idealized experimental density D(z,y, z) (see Figures
5.1 and 5.2).
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3. High-quality trio generation: Each conformer resulting from the search is re-minimized: a) under a condition in
which the density overlap is strongly weighted; and b) with no density overlap reward but with a square-welled
quadratic positional restraint. The three pools of conformers (high density weighting, blended weighting from
the thorough conformer search, and minimized under positional constraint) are used to find high-quality trios
that are characterized by high congruence to electron density and by low energy.

4. Ensemble generation: Conformers from the trios are used to construct occupancy-weighted ensembles that min-
imize real-space R. Calculations are done using L(x, y, z) for real-space electron density (the fast approximation
t0 peaie) and using the full experimental density sampled on a 0.25A grid.

5. Fit evaluation: Final statistics for real-space correlation coefficient and real-space R (RSCC and RSR, see
Experimental Section) are made by comparing the 0.25A grid-sampled experimental density to the density
derived from the ligand (or ligand ensemble). For PDB reference ligand coordinates, this is done using exact,
as-deposited, atom-specific B-factors, the resolution of the diffraction data, and the standard truncated Fourier
approach with fitted scattering factor functions for p.4;.. For xGen ensembles, the same procedure is followed,
except that a constant, grossly estimated, B-factor is used for all atoms of all conformers within an ensemble
(B-factor optimization does not enter into any aspect of deriving an xGen ensemble).

The entire procedure has been implemented within a PyMOL GUI. The xGen PyMOL GUI is implemented using
the PyMOL plugin interface. Installation is done via the menu [Plugin/Plugin Manager/Install New Plugin], clicking
[Choose File...], then navigating to select the file bin/pymol/sf_xgen gui/__init__.py, and finally accepting all
defaults as to installation location. The following assumes that the user has a valid license to the incentive version
of PyMOL (which supports key aspects of crystallographic file reading and processing) and has installed the xGen
plugin.

NOTE: The xGen GUI was initially developed for PyMol version 2.4. Later versions (including the v2.6 LTS PyMol
release), contain a misnamed DLL on Windows. The program mtz2ccp4_px.exe requires an Intel FFT library and
looks for mk1_rt.d11. Unfortunately, the PyMol distribution’s updated library is named mk1l_rt.2.d11. Attempting
to load an MTZ file into PyMol results in nothing happening. This can be fixed by navigating to the following folder
in the PyMol installation: Schrodinger/PyMOL2/Library/bin/ and renaming mkl rt.2.d11 tomkl rt.d11.

One can test the fix by loading an MTZ file into PyMol and looking for the omit maps that are provided in standard
PDB-deposited structures. Another method is to execute the mtz2ccp4_px command in a shell/console window, as
follows to see a usage message:

> cd “/AppData/Local/Schrodinger/PyMOL2/Library/bin

> > ./mtz2ccp4_px.exe

Usage: mtz2ccp4_px.exe <space_group> <a> <b> <c> <alpha> <beta> <gamma> <reso_high> ...

This DLL naming issue appears to be in multiple PyMol releases post v2.4.

7.1.1 Acquisition and preparation of input structures for xGen

The steps for ligand refinement from the command-line were covered in Chapter 5. Here, we will illustrate use of
the xGen PyMOL interface using the 3SUE example from a paper devoted to the question of bound ligand strain [5].
3SUE is hepatitis C virus NS3/4A protease bound to the inhibitor grazoprevir.

This procedure begins with two simple line commands in order to acquire the co-crystal structure and generate the
correctly protonated protein and PDB deposited crystallographic ligand. The file verifypdb.smi is present in the
directory so that PDB ligand quality checks occur. The density map in MTZ format is downloaded.

# Directory: examples/advanced/xgen-pymol/

: > sf-dock.exe getpdb PDBList trg

> source trg-script

# visualize the prepared protein and ligand
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> pym trg-pro-3SUE.mol2 trg-1ig-3SUE-SUE.mol2
9o # Download the Map Coefficients in MTZ format at https://www.rcsb.org/structure/3SUE

# KEY FILES:

3SUE. pdb co-crystal structure in pdb format
trg-pro-3SUE.mol2 correctly protonated crystallographic protein
trg-1ig-3SUE-SUE.mol2 correctly protonated crystallographic ligand
3sue_phases.mtz density map coefficients

73 5
H* H H

7.1.2 xGen PyMOL GUI

The xGen PyMOL GUI has simplified the five steps described above to generate low energy conformer ensembles that
fit X-ray data. Figures 7.1 - 7.6 show the successive steps within the GUI and the associated output. The red arrows
and green boxes highlight the button to click and files to be chosen at each step. The successive output automatically
appears in the PyYMOL session, and the session is saved as a .pse file. The small inset boxes in the Figures show the
objects being displayed in the PyMOL window.

# Directory: examples/advanced/xgen-pymol/

2> > pym
# GUI Ensemble Generation Steps:
# 1:Build Density Box move from Fourier space into real space
# 2:Calculate Idealized Density generates idealized contours
# 3:Run xGen Search generates trios
# 4:Run Ensemble Generation generates final ensemble
# 5:Real-Space Fit Evaluation RSCC and RSR of the ensemble vs xtal ligand

Figure 7.1 shows the xGen PyMOL GUI setup. The user launches a PyYMOL session from the command line within
the specified directory. From the PyYMOL Plugin menu, Surflex: xGen Ligand Refinement is chosen and then
the Select Folder button sets the current space as the working directory. Once the directory is chosen, the xGen
GUI opens on the xGen Density Setup tab.

Figure 7.2 shows Step 1, the move from Fourier space into real space. The user browses and selects the protein
(trg-pro-3SUE.mol2), the ligand (trg-1ig-3SUE-SUE.mol2), and the density map (3sue_phases.mtz). The
resolution should be changed from the default value (2.00A) to the resolution provided by the PDB annotation for
3SUE (2.20A). In this example and for many structures, the carve can be left at the default value of 5. Once these
choices are set, the user selects Build Density Box and a command prompt window launches and the process runs.
The experimental density is converted into a spherical Gaussian approximation for the region of space that includes
the reference ligand’s Van der Waals volume plus a buffer zone of 0.5A. Upon completion of this step, the output raw
contour appears in the PyMOL window.

Figure 7.3 shows Step 2, generation of the idealized density. The default choices are accepted: carve 0.5, outprefix
xg, and contour box checked. The user selects Calculate Idealized Density and a command prompt window
launches and the process runs (this can take several minutes, depending on hardware, for the 3SUE example). The
contour files may be visualized in order to see the concordance of the experimental and idealized density functions.
There can be missing areas in the contours, where there should be ligand or protein atoms but where no density
appears, due to a lack of experimental density. These contours are useful in visualizing the output ligand ensembles
from xGen ligand refinement and fitting procedures.

Figure 7.4 shows Step 3, generation of the conformer trios, which are, in turn, used to build conformer ensembles to
fit the idealized X-ray density. The xGen Search+Ensembles tab will automatically open at the completion of Step
2. The default values for the Constrained Conformer Search can be accepted, most importantly the Starting Ligand
Conformer (trg-1ig-3SUE-SUE.mo12) and the mode of search depth (pquant). The user should select Run xGen
Search, and a command prompt window launches and the process runs (a couple of minutes for the 3SUE example).
The output of this initial search process are conformer trios, where each conformer trio includes a high density overlap
conformer (biased towards fitting X-ray density), a low energy conformer (biased toward the MMFF94sf force-field,
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Lighting Settings
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Open the xGen GUI on the Plugin menu

Select the working directory

Figure 7.1 xGen setup involves opening the PyMOL GUI Plugin and selecting the working directory.

and a conformer with a blend of X-ray and energy bias. In the PyYMOL window, the user can visualize the trios
by expanding using the +Trios option in the object control panel. Three sets labeled Density-Biased, Blended, and
Energy-Biased appear in the PyMOL object list.

Figure 7.5 shows Step 4, generation of the xGen ensemble. Again, the auto-filled values are accepted, the user
selects Run Ensemble Generation and a command prompt window launches and the process runs (a few minutes
for the 3SUE example). The central goal of the xGen refinement procedure is to replace a single conformer with
optimized atom-specific B-factors (the input approximate ligand pose) with a conformer ensemble that makes use of
a constant B-factor for the entire ensemble. This final step identifies the ensemble that minimizes a fast calculation
of real-space R. The user may choose whether to use “strict” or “diverse” ensembles, with the former making use of
smaller numbers of conformers, possibly at the expense of a slightly poorer fit to X-ray density.

Figure 7.6 shows Step 5, the real space fit evaluation. The statistical evaluation is the one of the most complex of the
xGen procedures, as it must make use of atom-specific and resolution-specific truncated Fourier expansions of atomic
scattering factor functions in order to accurately calculate real-space density for xGen-style ensembles and traditional
PDB ligand representations. For the xGen ensembles, an approximate B-factor is identified during the evaluation
process (from 10-100 in steps of 5). For specified ligand ensembles whose atomic coordinates exactly match ATOM
and HETATM records within the given PDB file, those B-factors will be used.

RSCC, for a number of reasons, is more reliable than RSR in meaningfully assessing xGen ensembles compared
with traditionally optimized ligand models: 1) RSCC is not sensitive to electron density scaling; 2) RSR is often overfit
in a highly atom-centric manner (e.g. a single aryl halogen atom often has a very high B-factor when the remainder
of the arene does not); and 3) neither xGen nor traditional refinement protocols directly optimize RSCC, but both (to
some extent) optimize functions related to RSR.

During the Run Eval procedure, a command prompt window launches and near the end of the process, a 2nd
command prompt window launches. For the 3SUE example, the process completed in "15 min and the RSCC for
the xGen ensemble was 0.9470 compared to 0.9389 for the PDB deposited crystallographic ligand. The RSR for the
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Figure 7.2 Step 1 of xGen ensemble generation: Move from Fourier space into real space.

xGen ensemble was 0.1402 compared to 0.1432 for the PDB coordinates. Thus, the xGen ensemble fit the density
marginally better than the deposited ligand, and as will be shown below, was significantly lower in strain energy.

Figure 7.7 shows the selecting of specific conformers for real space fit evaluation. After calculation of RSCC and
RSR for the xGen ensemble, the user can scroll down and see a list of conformers along with the density occupancy,
strain energy, and density fit. The user may have an interest in a subset of the conformers. For clarity, selected
conformers are shown in the PyMOL window.

Figure 7.8 shows the real space fit evaluation for 3 selected conformers of the xGen ensemble. The RSCC for
the 3 selected xGen conformers was 0.9478 compared to 0.9417 for the PDB coordinates. The RSR for the xGen
conformers was 0.1337 compared to 0.1372 for the PDB coordinates. Thus, the 3 xGen conformers fit the density
better than the deposited ligand.

Figure 7.9 shows the final xGen ensemble (orange) with the original crystallographic ligand (cyan) and protein
(gray). Many of these visual depictions are not standard in crystallography workflows, but they have proven useful
in understanding why a particular conformer or ensemble is either nominally better or worse than another. Here, it is
useful to see that the 3SUE density accommodates conformational variation in the ligand.

The primary operations performed in this example demonstrate the xGen PyMol interface. The xGen GUI was
used to: (1) build the density box, (2) calculate the idealized density, (3) run the xGen conformer search, (4) generate
ensembles, and (5) evaluate the real-space fit.

An often important aspect of re-fitting ligands is the question of ligand strain. The final recommended step
in the xGen process is to compare the bound conformational energy of the re-fit ensemble and the original PDB
ligand. First, estimate the bound energy of the re-fit ensemble. The input are two key files from the GUI procedure,
xgensemble-confs.mol2and xgenout-*.mol2. The key output filexgen-bound-1og contains the energy estimate.
As is typical, the Boltzmann weighted energy (143.6 kcal/mol) and the minimum energy (143.2 kcal/mol) are very
close, and the minimum is recommended for strain estimation.

I # Directory: examples/advanced/xgen-pymol/
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Figure 7.3 Step 2 of xGen ensemble generation: Ideal and experimental densities.
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Figure 7.4 Step 3 of xGen ensemble generation: Trios.
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Figure 7.5 Step 4 of xGen ensemble generation: The final xGen ensemble.
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KEY INPUT FILES:
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Figure 7.7 Selecting conformer subsets for real space fit evaluation.
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Figure 7.8 Real space fit evaluation for selected conformers.

# After preparing the xGen refit X-ray conformational ensemble for vaniprevir,
following key files exist:

the
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xGen ensemble and crystallographic ligand with the original contours and protein

Figure 7.9 Final xGen ensemble.

# xgensemble -confs.mol2 the refit conformational ensemble for vaniprevir

# xgenout -*.mol2 the raw conformer search trios from the xGen fitting process
# To estimate the bound conformational energy of the re-fit ensemble

# note that we need to specify the "xgenout" prefix

# in order to identify the conformer trio data

# for the proper bound energy calculation:

> sf-tools.exe bound_energy xgensemble-confs.mol2 xgenout xgen-bound

# KEY OUTPUT FILE:

# xgen-bound-log contains the estimated bound energy for the ensemble

Second, estimate the bound conformational energy of the original PDB coordinates.

# Directory: examples/advanced/xgen-pymol/

# KEY INPUT FILES:
# trg-1ig-3SUE-SUE.mol2 the original crystallographic ligand

# To estimate the bound conformational energy of the original PDB coordinates
> sf-tools.exe bound_energy trg-1ig-3SUE-SUE.mol2 none pdb-bound

# KEY OUTPUT FILE:
# pdb-bound-1log contains the estimated bound energy for the original ligand

Here, the bound energy estimate for the PDB coordinates is 153.9 kcal/mol (over 10 kcal/mol higher than the re-fit
ensemble).

Third, estimate the global minimum energy for the ligand. To do so, generate a conformer pool of the original
ligand trg-1ig-3SUE-SUE.mol2 by performing a deep search at the -pquant level. Then, makes use of the
unbound_energy command to obtain a good estimate for the global minimum. The output file unbound-quick-log
shows 138.7 kcal/mol as the global minimum energy estimate.

# Directory: examples/advanced/xgen-pymol/

# KEY INPUT FILES:
# trg-1lig-3SUE-SUE.mol2 the original crystallographic ligand

# To estimate the global minimum energy of the ligand
# Perform a deep ring and conformer search
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> sf-tools.exe -pquant forcegen trg-1lig-3SUE-SUE.mol2 pqlig
> sf-tools.exe unbound_energy pqlig.sfdb unbound-quick

# KEY OUTPUT FILE:

2 # unbound-quick-log contains the estimated global minimum energy

The intramolecular strain of the xGen ensemble and that of the original crystallographic ligand are calculated by
subtracting the estimated global minimum energy from each. This yields strain values of 143.2-138.7 = +4.5 kcal/mol
for the xGen ensemble and 153.9-138.7 = +15.2 kcal/mol for the original PDB coordinates. Estimated energy strain
was reduced more than 10 kcal/mol: from +15.2 kcal/mol for the PDB deposited crystallographic pose to +4.5 kcal/mol
for the lowest energy xGen conformer. The examples in this chapter detail the importance of ligand strain and how
strain can be estimated for xGen ensembles, original crystallographic ligands, and docked ligands (described in the
PROTAC and PDL1 examples below).

Understanding whether a strain estimate is physically reasonable is important. There is a limited amount of
energy that can be obtained from non-covalent association of a protein and ligand. As a rule of thumb, roughly -0.3
kcal/mol/heavy-atom is a generous estimate for enthalpic energy per atom (for a more detailed discussion, including
aspects of ligand efficiency, refer to this extensive study of bound ligand strain [5]). Grazoprevir (the 3SUE ligand)
has 54 non-hydrogen atoms, and its experimentally determined free energy of binding is -12.3 kcal/mol (K;=0.84
nM). With 54 heavy atoms and a ballpark value of -0.3 kcal/mol per heavy atom for enthalpy, we would optimistically
expect roughly -16.2 kcal/mol for the overall enthalpy of protein-ligand binding.

However, the bound ligand strain works against the energy of protein-ligand association. In the original deposited
PDB coordinates, the estimated strain is of the same rough magnitude (+15.2 kcal/mol) as a generous estimate of
possible enthalpic energy of binding (-16.2 kcal/mol). Considering entropic losses as well, grazoprevir would not
bind the protease at all if its strain were that large. The lower strain energy of the xGen ensemble seems much more
plausible (+4.5 kcal/mol), as it is approximately one-quarter the magnitude of our optimistic estimate of possible
enthalpic protein-ligand association energy.

7.2 PROTAC DOCKING

PROTAC:S are a type of molecular glue designed to bring an E3 ubiqitin ligase in close proximity to a protein of
interest (POI) such that the ubiquitination of the target protein leads to degradation by the proteasome. PROTACsS are
challenging to study using structure-based drug design (SBDD) due to the large size of the ligands and the complexities
of crystallizing ternary complexes. Accurate docking requires that ternary complexes of good resolution are available
and that the conformational space of the PROTAC to be docked has been sufficiently searched. Ideally, the docking
method should have quantitative output that can be related to the half-maximal degradation concentration (DC50)
within a series of PROTAC.
The steps for PROTAC Docking will be briefly summarized here:

1. Acquire and prepare the crystallographic proteins and ligands, and align the proteins if more than one complex
is available for the target.

2. Prepare the protein targets for docking by generating protomols.

3. Using the cognate ligand for the protein target of docking, generate molecular fragments that represent the
warheads for the E3 ligase and the POI.

4. Generate a constrained conformer pool of the ligand to be docked using the warhead fragments as tight or loose
restraints.

5. Generate an unconstrained deeply-searched conformer pool to identify the global minimum energy.

6. Dock the warhead-constrained conformer pools and generate pose families from the docked conformers.
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7. Estimate the strain of the docked conformers by subtracting the energy of the global minimum from the calculated
energy of the top docked pose family.

Here, we will use an example of the von Hippel-Lindau (VHL) E3 ligase in complex with a PROTAC and the
BRD4 target protein (PDB Code 8BDS) as the target for docking a non-cognate PROTAC (the ligand of 8BEB).
This procedure begins with two simple line commands in order to acquire the co-crystal structures and generate the
correctly protonated proteins and crystallographic ligands. The file verifypdb.smi is present in the directory so that
PDB ligand quality checks occur. Protein pocket alignment is performed using the psim_align_all command.

# Directory: examples/advanced/protac-docking/

acquire, prepare, and align the proteins
sf-dock.exe getpdb PDBList trg

source trg-script

sf-dock.exe psim_align_all trg-plist trg_align

vV V VvV #

H*

visualize the prepared and aligned proteins, and the transformed ligands
> pym trg_align-cO-*.mol2

# KEY OUTPUT FILES:

# trg_align-cO-pro-8bds-QIY.mol2 correctly protonated crystallographic protein
# trg_align-c0-1ig-8bds-QIY.mol2 correctly protonated crystallographic ligand
# trg_align-cO-pro-8beb-QIK.mol2 correctly protonated crystallographic protein
# trg_align-c0-1lig-8beb-QIK.mol2 correctly protonated crystallographic ligand

Figure 7.10 shows the prepared and aligned crystallographic proteins as well as the transformed ligands. In preparation
for docking, the binding site is scoped and a protomol (idealized ligand) is generated:

# Directory: examples/advanced/protac-docking/
# prepare the 8BDS protein for docking

echo trg_align-cO-pro-8bds-QIY.mol2 trg_align-cO0-1lig-8bds-QIY.mol2 > proto-list
sf-dock.exe mproto proto-list pl

Vv Vv

# KEY OUTPUT FILES:

# pl-targets text file list of protein targets
# pl-protomol.mol2 idealized ligand

# pl-corevox.mol2 marks deepest area of pocket

Figure 7.11 shows the protomol and corevox for the 8BDS protein. The protomol is an idealized ligand that scopes
the binding pocket and the corevox mark the most deeply buried area of the pocket.

Generating deeply-searched, warhead-constrained conformer pools is key to docking PROTACs. Molecular frag-
ments representing the two warhead moieties that bind the POI and ligase respectively can be generated from a known
crystallographic ligand. In order to match a diverse set of analogs that may include linker and warhead variation, the
fragments should have protons removed and substituents trimmed. The exact definition of the warhead fragments can
be somewhat tricky, particularly as regards the matching between an apparently SP3 site on a fragment and a non-SP3
site on the PROTAC of interest. Users should be careful to make sure that both fragments are correctly matching the
PROTAC (see below).

In this exercise, QIY warhead fragments are generated and three QIK conformer pools are generated. First is a
constrained search using the warhead fragments as tight conformational restraints (default search behavior). Second,
since linkers are varied, warhead movement might occur. Loosening the torsional restraint during search (pwiggle
parameter) allows for warhead movement, but also requires a deeper search using fgen_deep to be sure to thoroughly
cover the conformational space. As a control, the loosely constrained pool was profiled against the crystallographic
pose of QIK resulting in the profpgdeep-confreport.tab output table. Sorting low to high on column G_RMS
shows the best RMSD was 0.9A. Third, in order to obtain a global energy minimum conformer, a conformer pool
was generated through constraint-agnostic conformational search. The agnostic pool was also profiled against the
crystallographic pose of QIK resulting in the profpgdeepagnostic-confreport.tab output table which showed
the best RMSD was 1.3A.
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Ternary complexes 8BDS and 8BEB were prepared and aligned.

Figure 7.10  PDB ternary complexes 8BDS and 8BEB were acquired and prepared, and the protein binding pockets were aligned.

#

*# VvV oH H

Vv o#H

H H ®

H OH B O

H*

Directory: examples/advanced/protac-docking/

Manually create fragl.mol2 and frag2.mol2 from the aligned 8BDS-QIY ligand
--> fragl.mol2 and frag2.mol2

These should have protons removed and have substituents trimmed off.

cat fragl.mol2 frag2.mol2 > frags.mol2

KEY OUTPUT FILE: frags.mol2

Randomize the cognate conformation of QIK
sf-tools.exe regen3d trg_align-cO-lig-8beb-QIK.mol2 qik
KEY OUTPUT FILE: qik-random.mol2

Regenerate the starting conformation using the fragments
sf-tools.exe -torcon frags.mol2 regen3d qik-random.mol2 qik-fg3d

Here, the output to the console will show something like this:

User specified -torcon: 2 mol fragments

Read 8beb-QIK

Initial energy/atom: 1.32 (nmacroflex = 0)

Torcon min energy: total 4.29e+11 torcon 20847.30 (ntor = 50)

POSITIONAL CONSTRAINTS (N TORCON FRAGS = 2): (56: force 5.0 wiggle 0.2
(21: force 5.0 wiggle 0.2 pos 9.13 -5.45 -14.26)

........ LI l==11==1===8>$3$3$ >

FINAL best energy for 8beb-QIK: 165.881 (1.32 per atom)
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8BDS protomol and corevox for docking.

Figure 7.11 In preparation for docking, the protomol and corevox were generated for the 8BDS protein.

(torcon_energy = 0.123)
(pos_energy = 0.839)

KEY OUTPUT FILE: qik-fg3d-random.mol2
Visualize that the restraints were applied correctly:
pym frags.mol2 qik-fg3d-random.mol2

145

In the initial re-generation of the 3D structure subject to the warhead fragment restraints, we see that two fragments
have been parsed from the input restraint file, and that positional restraints, in addition to torsional restraints, have been
applied to the input ligand. Displaying the warhead fragments with the regenerated 3D coordinates will show tight
alignment between the fragments and the matching parts of the input ligand if the matching has proceeded correctly.

FH*

Perform conformational search using the warhead fragments as a guide using

tight (default) restraints

sf-tools.exe -torcon frags.mol2 -pquant forcegen qik-fg3d-random.mol2 pg-torcon-tight
KEY OUTPUT FILES: pg-torcon-tight.sfdb

Visualize the resulting pool. The tight restraints hold the fragments in place strongly.

sf-tools.exe extract_sfdb pg-torcon-tight.sfdb disp
pym frags.mol2 disp-8beb-QIK.mol2

Perform conformational search using the warhead fragments as a guide using

loose restraints

sf-tools.exe -torpen 0.01 -pwiggle 2.0 -torcon frags.mol2 -pquant fgen_deep
qik-fg3d-random.mol2 pg-torcon-deep

KEY OUTPUT FILES: pg-torcon-deep-final.sfdb

Profile the loosely constrained pool against the bound form. Best RMSD is 0.9 Angstroms.
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8BDS-QIY ligand warhead fragments.

Figure 7.12 Warhead fragments from the crystallographic 8BDS ligand QIY were generated as torsional restraints for QIK
conformer generation.

VvV o# H# VvV oH H*

H*

sf-tools.exe profile pg-torcon-deep-final.sfdb trg_align-c0-1lig-8beb-QIK.mol2 profpqgdeep
KEY OUTPUT FILE: profpqdeep-confreport.tab

Perform an agnostic conformational search

sf-tools.exe -pquant fgen_deep qik-random.mol2 pg-agnostic-deep

KEY OUTPUT FILES: pg-agnostic-deep-final.sfdb

Profile the agnostic pool against the known bound form(best RMSD is 1.3 Angstroms)

sf-tools.exe profile pg-agnostic-deep-final.sfdb trg_align-c0-1lig-8beb-QIK.mol2
profpgdeepagnostic

KEY OUTPUT FILE: profpqdeepagnostic-confreport.tab

As before in displaying the initial regenerated 3D ligand structure, the resulting conformer pool from the restrained
conformer search can be displayed and should show good adherence of the ligand warhead substructures to the given
fragments. The degree of restraint can be varied using the -pwiggle parameter of the ForceGen search. Figure 7.12
shows the warhead fragments derived from 8BDS, which are the binding moieties for the POI and the E3 ubiquitin
ligase. Again, checking for proper matching between these fragment and the PROTAC to be docked is important, as
described above.

Each of the three QIK conformer pools described above were docked to the 8BDS protein. The pool loosely

constrained by the warheads is docked first here as this is the pool most relevant to a real-world PROTAC program.
The docking commands for each of the three conformer pools are as follows.

#

vV # # Vv v

H*

Directory: examples/advanced/protac-docking/

Dock the loosely constrained conformer pool and make pose families

sf-dock.exe -lmatch trg_align-c0O-1lig-8bds-QIY.mol2 -pquant gdock_list
pg-torcon-deep-final.sfdb pl-targets pqdeepdock

sf-dock.exe -posehints trg_align-c0-1lig-8bds-QIY.mol2 posefam pqgdeepdock

KEY OUTPUT FILE: pqdeepdock-topfam.mol2

Visualize the docking results

pym disp.pml

Dock the tightly constrained conformer pool and make pose families

sf-dock.exe -lmatch trg_align-c0-1lig-8bds-QIY.mol2 -pquant gdock_list
pg-torcon-tight.sfdb pl-targets pqtightdock

sf-dock.exe -posehints trg_align-cO0-1lig-8bds-QIY.mol2 posefam pqtightdock

KEY OUTPUT FILE: pqtightdock-topfam.mol2

Dock the agnostic conformer pool and make pose families
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sf-dock.exe -lmatch trg_align-cO-1lig-8bds-QIY.mol2 -pquant gdock_list
pg-agnostic-deep-final.sfdb pl-targets pqgdeepdockagnostic

sf-dock.exe -posehints trg_align-c0-1lig-8bds-QIY.mol2 posefam pqgdeepdockagnostic

KEY OUTPUT FILE: pqdeepdockagnostic-topfam.mol2

Figure 7.13 shows the docking results. Shown in grey is the top pose family for the loosely constrained QIK

conformer pool relative to the crystallographic pose of QIK (pale yellow). The conformers in the docked top pose
family range from 0.8 - 1.5A RMSD relative to the native pose.

Fragment restraints and docked QIK. Docked vs crystallographic QIK.

Figure 7.13 Docked QIK relative to the QIY warhead fragments and the crystallographic QIK ligand.

As was discussed above in the xGen ensemble example, it is important to estimate strain for docked ligand poses.

The strain estimation protocol for the docked poses of the loosely constrained QIK conformer pool is as follows.

H H VO H B B H H*

v

Directory: examples/advanced/protac-docking/

To calculate the strain for the docked top pose family

of the loosely constrained conformer pool,

we will apply a simple procedure to reduce singularities

and perform local minimization on the docked and global conformer pools
sf-tools.exe bound_energy pqdeepdock-topfam.mol2 none pqdeepdock-bounden

KEY OUTPUT FILE: pqgdeepdock-bounden-log

The minimum energy value in the log file shows a bound energy of 164.8 kcal/mol

Estimate the strain for the global minimum from the agnostic constrained conformer pool
sf-tools.exe unbound_energy pq-agnostic-deep-final.sfdb globen

The minimum energy value in the log file shows a global minimum of 151.7 kcal/mol

so the strain estimate is 164.8-151.7, roughly 13 kcal/mol

As seen in the output file pqdeepdock-bounden-1log, the Boltzmann weighted energy minimum for the top docked

pose family of the loosely constrained pool was 164.8 kcal/mol. And, as seen in the output file globen-1log, the
minimum energy for the agnostic conformer pool was 151.7. Subtracting the strain of the global minimum from that
of the docked pool yields a strain estimate of 164.8-151.7, roughly 13 kcal/mol. This is a reasonable strain estimate
for a ligand as large as the PROTAC QIK.
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7.3 MACROCYCLIC PEPTIDE RESTRAINED SEARCH, DOCKING, AND STRAIN ESTIMATION

Lead optimization of large macrocyclic peptides in real-word pharmaceutical applications is challenging. There are
significant computational obstacles in modeling these molecules including: (i) generating conformer pools that include
the biologically-relevant conformations, (ii) docking such complex molecules, and (iii) accurate strain estimates.
With respect to macrocyclic conformer generation, forcegen and fgen_deep have both been successful with deep
unrestrained search, NMR-restrained search, and torsionally restrained search. The example presented here is taken
from work on a real-world macrocyclic lead optimization project [6]. Macrocyclic peptides were designed to block the
PD-1/PD-L1 interaction as potential anti-cancer therapeutics. The computational approach began with applying NMR
restraints to yield a low energy 3D conformer of a lead molecule. From the lead compound conformer, a backbone
was derived to torsionally constrain the conformer search of the follow-on molecules including the clinical candidate.
The conformer pools were docked into a single available crystal structure. The estimated intermolecular noncovalent
binding enthalpies and intramolecular strains were used to estimate the free energy of binding. The estimated binding
energies showed a statistically significant correlation to the experimental values. Figure 7.14 shows the 2D structures
of the lead molecule Pep-01 and the clinical candidate BMT-174900. Shown in red numbers on the right-hand structure
are the 6 changes from Pep-01 to make BMT-174900. Systematic exploration at those 6 positions with just 5 alternate
amino acids would require over 15,000 analogs. The computational procedure outlined here was designed to make
lead optimization of such molecules much more efficient.
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Figure 7.14 Lead molecule Pep-01 and clinical candidate BMT-174900.

The following shows the sequence of commands to run compound bmt-174900 through the full workflow in order
to obtain an estimate of how well it binds. The RunQuick and RunThorough bash-style scripts can be used to run any
of the compounds provided in pep. smi.

# Directory: examples/advanced/macro-peptide/
See file: RunAll

Grab the peptide in question from the SMILES file
grep bmt-174900 pep.smi > bmt-174900.smi
Generate a conforming 3D to the full backbone frags, then do a loose -torcon ForceGen
sf-tools.exe -torcon allfrags.mol2 fgen3d bmt-174900.smi bmt-174900-fg3d
sf-tools.exe -findbeta -torpen 0.01 -torcon allfrags.mol2 -pquant forcegen
bmt -174900-fg3d.mol2 pq-bmt-174900

H V # VvV #®

6PV9 is the co-crystal structure of human PD-L1 and Pep-01
generate the protomol for 6PV9 using the xGen refit ligand
echo pro-6PV9.mol2 1lig-6PV9.mol2 > mproto-list

sf-dock.exe mproto mproto-list pl

vV VvV # H#

H*

Do the docking and pose family construction
> sf-dock.exe -1lmatch 1lig-6PV9.mol2 -pquant gdock_list pq-bmt-174900.sfdb pl-targets
log-bmt -174900
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> sf-dock.exe -posehints 1ig-6PV9.mol2 posefam log-bmt-174900

# Compute the bound conformational energy and the intermolecular score
> sf-tools.exe bound_energy log-bmt-174900-topfam.mol2 bmt-174900-en
> sf-dock.exe -ntweak 10 opt log-bmt-174900-topfam.mol2 pro-6PV9.mol2 opt-bmt-174900

# Dump the values to output files
> grep Boltzmann bmt-174900-en-log | awk ’{print $6}’ > bmt-174900-boundenergy
> grep Intermolecular opt-bmt-174900-log | awk ’{print $3}’ > bmt-174900-interscore

# Do a ForceGen search from the original 3D (backbone-restrained) conformer to find the
global min
# sf-tools.exe -findbeta -pquant forcegen bmt-174900-fg3d.mol2 pq-bmt-174900-glob

# Find the nominal global minimum
> sf-tools.exe unbound_energy pq-bmt-174900-glob.sfdb bmt-174900-glob-en
> grep Boltzmann bmt-174900-glob-en-log | awk ’{print $6}’ > bmt-174900-globmin

# Now, the bound energy (kcal/mol) is in bmt-174900-boundenergy, the global min is in
bmt -174900-globmin

# and the intermolecular score is in bmt-174900-interscore (pKd units)

# To compute an estimate of the binding enthalpy (kcal/mol): (bound_en - globmin_en) +
(-1.36 * interscore)

> paste bmt-174900-boundenergy bmt-174900-globmin bmt-174900-interscore |
awk ’{print (($1-$2) + (-1.36 * $3))}’ > bmt-174900-enthalpy

# Note that this could also be run as ./RunQuick bmt-174900

> # and the more thorough search variation by ./RunThorough bmt-174900

Backbone derived from NMR-restrained conformer of Pep-01.

Figure 7.15 Backbone of the low energy conformer from an NMR-restrained pool for the lead molecule.

Figure 7.15 shows the backbone derived from the lowest energy conformer of the lead molecule Pep-01. The
conformer pool from which this conformer was derived was generated using NMR restraints. The backbone
allfrags.mol2 was employed as a torsional constraint using the —torcon parameter in both 2D -> 3D conver-
sion and the conformer search for the set of peptides in this study. The -findbeta parameter that searches for and
enforces beta hairpin hydrogen bonds was turned off so as not to unduly influence the search.

Although it was not done here, it would also have been valid to generate the backbone fragment from a crystallo-
graphic ligand. 6PV9 is the co-crystal structure of human PD-L1 and Pep-01. To demonstrate the validity of deriving
the torsional constraint from an NMR restrained Pep-01 conformer, the NMR restrained ensemble was compared to
the xGen re-fit (1ig-6PV9.mo12) of the crystallographic ligand (1ig-6PV9-orig.mol2). It was shown that there
was a low energy NMR restrained conformer within 0.9ARMSD for all non-hydrogen atoms and 0.4ARMSD for ring
backbone atoms of the xGen refit ligand ([6]). Although the 6PV9 structure was not used as the source of the Pep-01
backbone, it was used as the target for docking Pep-01 analogs in this exercise.
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Figure 7.16 shows the crystallographic 6PV9 protein (green) and the xGen re-fit (cyan) of the coordinates for
Pep-01. The original ligand had been modeled well (grey sticks, Figure 7.16) with the exception of one incorrect chiral
center that caused a distortion to the ring-closing thioether linkage (red arrow, Figure 7.16). The xGen refinement was
important as the corrected ligand was then used as a known pose in the docking of a series of peptides to the 6PV9
structure.

For these large macrocyclic peptides, the conformer search and the docking were performed at the -pquant level
to ensure sufficient depth. The xGen re-fit of the crystallographic ligand was employed as a known pose in the docking
and in the generation of docked pose families. Figure 7.17 shows the top pose family (wheat color) from the docking
of clinical candidate BMT-174900. The predicted bound pose showed two salt bridges to the protein at positions 5
and 10 (red arrows) which could contribute to the significant improvement in affinity over the lead molecule. As
discussed in the xGen example, the binding enthalpy was estimated by combining the intermolecular noncovalent
binding enthalpy (here, an optimized docking score) with the the intramolecular strain. The intermolecular score was
24.8 pKy, yielding -33.7 kcal/mol (= 24.8 * -1.36). The calculated strain was 2.8 kcal/mol (= 296.1 kcal/mol [bound
energy] - 293.3 kcal/mol [global min]). So, the estimated binding enthalpy was -30.9 kcal/mol (= -33.7 kcal/mol
[intermolecular score] + 2.8 kcal/mol [strain]).

A much more extensive discussion of this example along with implications for molecular design strategies is
presented in the full paper [6]. In particular, it turns out that strain estimates can be more important in estimating
binding affinity than the magnitude of the enthalpic aspect of protein-ligand interactions.
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