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Abstract 

Cytosolic sulfotransferases (SULTs) are a family of enzymes responsible for the sulfation of small endogenous 

and exogenous compounds. SULTs contribute to the conjugation phase of metabolism and share substrates with 

the Uridine 5'-diphospho-glucuronosyltransferase (UGT) family of enzymes. UGTs are considered to be the most 

important enzymes in the conjugation phase, and SULTs are an auxiliary enzyme system to them. Understanding 

how the regioselectivity of SULTs differs from that of UGTs is essential from the perspective of developing novel 

drug candidates. We present a general ligand-based SULT model trained and tested using high-quality 

experimental regioselectivity data. The current study suggests that, unlike other metabolic enzymes in the 

modification and conjugation phases, the SULT regioselectivity is not strongly influenced by the activation 

energy of the rate-limiting step of the catalysis. Instead, the prominent role is played by the substrate binding 

site of SULT. Thus, the model is trained only on steric and orientation descriptors, which mimic the binding 

pocket of SULT. The resulting classification model, which predicts whether a site is metabolized, achieved a 

Cohen’s kappa of 0.65.  
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Introduction  

The general aim of the conjugation phase of metabolism is to increase the solubility of small molecules to 
prepare them for excretion. The solubility of a compound is increased by linking a polar moiety, such as 
glucuronic or sulfonic acid, from a cofactor to a potential site of metabolism (SoM). The conjugation phase is 
also called phase II metabolism, as it generally follows the modification phase (phase I), in which functional 
groups are introduced by enzymes such as Cytochrome P450s that are SoMs for the conjugation reactions 1, 2. 
However, occasionally, the modification phase is omitted and a parent drug may be directly conjugated.  3   
 
Studying the modification and conjugation phases enables us to build models that predict the substrates of 
various metabolic pathways, which is valuable for developing drugs, agrochemicals, nutritional supplements, 
and cosmetics. The predictions from such models can help to optimize of the structures of new chemical entities 
and identify toxic metabolites early in a project, making the process more cost-effective. 4, 5 The prevalent 
enzyme families in the modification phase have been thoroughly studied, and several successful predictive 
models have been built for Aldehyde Oxidases 6, 7, Cytochrome P450s 5, 8-12, and Flavin-containing 
Monooxygenases (FMO) 7. The most important enzyme family in the conjugation phase, for which several 
successful models have also been built, is Uridine 5'-diphospho-glucuronosyltransferase (UGT) 7, 13-16. The 
present study concentrates on the cytosolic sulfotransferase (SULT) family of enzymes, which are considered to 
be the second most important enzyme family in the conjugation phase and share the substrate space with UGTs. 

17 The general aim of this study is to expand the range of models for enzyme families in the conjugation phase 
by training a model which predicts the regioselectivity of SULT metabolism.  
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A second class of sulfotransferases, the membrane-associated sulfotransferases, which are known to sulfonate 
larger biomolecules, have not been considered in this study. 18, 19  
 

Sulfotransferases  

In 1876, Baumann isolated phenyl sulfate from the urine of a patient who had been administered phenol.  20, 21 
Since this discovery, sulfation has been proven to be an essential conjugation reaction for endo- and xenobiotics. 
Sulfation is catalyzed by SULTs, which are found in many organs, including the liver, where many xenobiotics are 
metabolized. The first human isoforms isolated were SULT2A1 by Otterness et al., 22 and SULT1A1 by Wilborn et 
al., 23 in 1992 and 1993, respectively. To date, there are at least 15 known human SULT isoforms: 1A1, 1A2, 1A3, 
1A4, 1B1, 1C4, 1C2, 1C3a, 1C3d, 1E1, 4A1, 2A1, 2B1a, 2B1b, and 6B1. 24 Furthermore, four pseudogenes 1D1P, 
1D2P, 2A1P, and 3A1P are also known. 25  
 
1A1 is generally recognized to have the greatest contribution to SULT mediated metabolism because it has a 
wide range of potential substrates; thus, it is the isoform of most interest. 26 Other isoforms prevalent in liver, 
kidneys, small intestine and lungs include 1A3, 1B1, 1E1, and 2A1. 27 Interestingly, 1A3, which shares 93% 
sequence identity with 1A1, 19, 18 is not as promiscuous as 1A1 and has a general preference towards bioamines 
such as dopamine. 19 1B1 appears to have a major physiological role in thyroid hormone metabolism,  28 1E1 has 
a high affinity for the sulfation of endogenous estrogens, and 2A1 is responsible for most bile acid sulfation.  

26  The other SULT isoforms are not of as much interest as these isoforms do not play an important role in 
metabolizing xenobiotics within the aforementioned organs.  
 

The Mechanism of Sulfation  

Sulfation by SULTs transfers a sulfonic acid from a cofactor, 3’-phosphoadenosine-5’-phosphosulfate (PAPS), to 
the respective substrate, as depicted in Figure 1. The most commonly sulfated groups are phenols and alcohols. 

19 Other functional groups, such as N-oxides, are known to be metabolized (e.g. minoxidil); 26 however, the 
experimental data for such groups is sparse, and they are not included in the following work. The substrate 
specificity of SULTs overlaps with UGT and where glucuronidation occurs, sulfation is usually a lesser metabolic 
pathway. Nonetheless, there are molecules which are primarily metabolized by SULTs (e.g. ethinyl Estradiol 29). 
As with other metabolism enzymes, the amino acid sequence of the catalytic core is conserved in all SULT 
isoforms; thus, the reaction mechanism is consistant for all isoforms. 5, 18, 30  
 

 
Figure 1. Sulfation of Estradiol, 31 a known SULT substrate. The cofactor PAPS is depicted on the reaction arrow. 
  
The general catalytic cycle of sulfation follows a mechanism where the cofactor, PAPS, binds to the enzyme 
before the substrate. The sulfonic acid is transferred to the substrate once the ternary enzyme complex is 
formed. The products are released in an orderly fashion (metabolite first), and the catalytic cycle can start again. 

18 The sulfation itself is thought to proceed by an in-line attack of the nucleophile at the sulfate group of PAPS; 
however, according to the DFT calculations by Bartolotti et al., 32 it does not happen through the classical trigonal 
bipyramidal SN2 transition state suggested by various experimental studies. 32-35 The study by Bartolotti et al. 
utilized the crystal structure of SULT1E1 (the SULT responsible for the sulfation of Estrogen) to model the 
transition state of the sulfation reaction and concluded that the lysine residues 48 and 106 act as possible charge 
stabilizers and also as possible sources of protons, while histidine 108 acts as a proton acceptor. The mechanism 
found is considered largely dissociative as it happens through two transition states. The first step is the the 
dissociation of the bond between the leaving group (3’-phosphoadenosine-5’-phosphate) and the sulfonic acid, 
during which a proton is carried over to the leaving group from either of the lysine residues. According to various 
studies, this step could, in theory, happen without the substrate and the SO3 would be stabilized within the 
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protein. 32, 35, 36 The second transition state (Figure 2) involves the formation of the product, where the proton 
of the hydroxy group of the substrate is transferred to the histidine residue 108. The reaction ends with the 
protonation of the sulfate entity of the product. 32, 35  

  
Figure 2. The formation of the product; reproduced from the work by Bartolotti et al. 32 The ammonia molecule 
accepting the proton is the aforementioned histidine 108 and remaining ammonia molecules are lysine residues 
48 and 106.  
 

Modelling Drug Metabolism  

The modelling method we have used herein for the regioselectivity models is the reactivity-accessibility 
approach, which falls under the category of ligand-based models. This approach relies on experimental 
knowledge of molecules metabolized by the biological target of interest as opposed to structure-based methods, 
which use three-dimensional knowledge of the enzyme. The reactivity-accessibility approach divides the 
substrate-protein interaction into two conceptual parts; the first part, reactivity, describes the reactivity of a 
potential site of metabolism (SoM) to the reaction mechanism of the enzyme. In the current work we planned 
to use the activation energy value (Ea) of the rate-limiting step of the catalytic cycle to represent the reactivity. 
The Ea is related to the reaction rate, and previous studies of other enzymes have shown that experimentally 
measured reaction rates of metabolism correlate well with the calculated Ea values of the rate-limiting step. 5, 30 
Since the Ea is often calculated using a simplified reaction mechanism, it does not consider the effects of the 
protein structure surrounding the reaction center; thus, additional descriptors are also required to describe the 
potential interactions between the substrate and the enzyme, and their impact on the accessibility of the SoM 
to the reaction center. In the current work, a set of two-dimensional structural descriptors are used to represent 
steric and orientation effects. 5  
 
The Ea is obtained by using fundamental and transferable quantum mechanical methods. While the structure of 
the cofactor is often simplified to decrease the timeframe of the calculations, the structure of the substrate 
should not be fragmented because the long-range  electronic effects within the substrate can play an important 
role in estimating the Ea, particularly in conjugated systems. 5, 7, 30  
 
The accessibility descriptors are used to correct the Ea due to steric and orientation effects, which arise when 
the potential substrate enters the enzyme's active site. In the case of SULTs, the descriptors are used to describe 
the substrate accessibility to the sulfonate group of PAPS. The orientation of the substrate in the binding pocket 
of the protein depends on the interaction between the functional groups of the substrate and the residues of 
the protein and must be considered when predicting the observed SoMs of SULTs. Similarly, the steric 
descriptors capture the effects of steric hinderance within the substrate (e.g. a potential SoM is protected by 
bulky groups). These steric and orientation factors are described using two-dimensional, site-specific structural 
descriptors which capture where the potential SoM is located, in relation to the relevant functional groups of 
the substrate. 5, 7  
 
As mentioned above, the reaction mechanism for sulfation is conserved across the SULT isoforms, making the 
reactivity descriptor, the site-specific Ea, applicable to all SULT isoforms. The steric and orientation effects of 
individual isoforms would be captured by the two-dimensional structural descriptors. Thus, combining the 
reactivity and accessibility descriptors with isoform-specific experimental data allows us to train predictive 
Quantitative Structure-Activity Relationship (QSAR) models for every SULT isoform with enough publicly 
available experimental data. 5, 7, 12, 37  
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The Aim of the Study  

The initial aim of the study was to build a reactivity-accessibility model that predicts the SoM for substrates of 
SULT isoforms found in humans. First, a detailed understanding of the rate-limiting step of the SULT catalytic 
mechanism is necessary to assess the reactivity of each potential SoM. Such a study was conducted using density 
functional theory (DFT). It aimed to determine the simplified mechanism of the product formation step for SULT 
and to validate the mechanism identified by comparing the calculated Ea values with experimentally measured 
reaction rates and observed SoMs. Having determined the reaction mechanism using DFT simulations, semi-
empirical quantum mechanical methods would typically be used to calculate Ea values within a reasonable time 
frame for use in a QSAR model; semi-empirical results used in this way are validated using DFT. 7, 30 However, as 
discussed below, our study, suggested that the SULT metabolism depends mostly on the accessibility of the SoM. 
Thus, the final predictive model was trained using only the accessibility descriptors using high-quality 
experimental regioselective SULT data.  
 

Theory and Implementation  

Computational Methods  

Initial three-dimensional structures for all substrates in this work were generated with either Avogadro 38 or 
from SMILES by using OEChem by OpenEye. 39, 40 The transition state structures for DFT were generated 
manually. Both structure pre-optimization and potential energy surface scanning were done using the semi-
empirical method AM1 41 using the program package CP2K 42.  
 
DFT calculations were run using the functional B3LYP-D 43-47 along with the def2-SVP 48 basis set. B3LYP was 
chosen because the presented reaction mechanisms calculated by hybrid GGA functionals yield similar results 
to the more expensive hybrid meta-GGA functionals. 7, 49 Geometry optimizations were performed on the initial 
structures, followed by frequency calculations to verify the local minima or the transition states. The DFT 
calculations were performed with the NWChem 6.8 program package 50. The weak interactions between 
fragments within a transition state were calculated using Multiwfn. 51  
 

Machine Learning  

As mentioned before, the descriptors used within the current work are Ea values describing the reactivity of a 
potential SoM and site-specific atom-pair descriptors for describing steric and orientation effects. The Ea values 
were calculated in a similar fashion to our previous work and are described below in detail for the SULT reaction 
mechanism. 5, 7, 30. The semi-empirical calculations to obtain the Ea values are described in the results. The atom-
pair fingerprints for potential SoMs were obtained using RDKit (https://www.rdkit.org) – the Python scripts used 
to calculate the fingerprints can be found from the Supporting Information.  
 
The data obtained were split into a training and a test set in an approximate ratio of 80:20, respectively. The 
split was based on molecules; thus, all potential SoMs of each substrate were either in the training or the test 
set. The compounds for the training and test sets were chosen randomly, but a visual check was performed to 
confirm the chemical space (without inspecting the individual structures) of the training set was roughly covered 
by the compounds in the test set. The random forests (RF) method 52 from the Auto-Modeller module in StarDrop 
was used to train the model (default parameters were used).  
 
The Cohen’s kappa (kappa or κ) statistic is used to report the reliability of the RF classification models. The kappa 
value is a more robust measure than the percentage agreement since it takes into account the possibility of 
agreement occurring by chance, although percentages are also reported in the current work. Furthermore, the 
confusion matrix for the SULT model perdictions is provided. The rules of how kappa values were evaluated are 
shown in Table 1.  
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Table 1 Approximate ranges for evaluating kappa values.  

κ value  Agreement value  

κ < 0.5  poor agreement  

0.5 ≤ κ < 0.6  moderate agreement  

0.6 ≤ κ < 0.8  good agreement  

0.8 ≤ κ < 1.0  very good agreement  

  
The most rigorous test of a model to avoid overtraining is to asses it’s predictive accuracy on an external test 
set. However, the data set within this work is relatively moderate in size; thus, an external test set could not be 
used. In these cases, additional tests such as y-scrambling were applied. Such tests are necessary because each 
data point has hundreds of descriptors which might correlate for no reason. Y-scrambling is a simple test to 
explore the predictive power of pure chance in which the values of the experimental data (the values to be 
predicted) were shuffled while the descriptor values were left intact. The scrambled data were then used to 
train a QSAR model. The Cohen’s kappa value for a model trained on the scrambled data should be close to zero, 
which corresponds to the degree of agreement that would be expected by chance. If a substantially higher 
Cohen’s kappa is found, this would indicate that the model building and validation process is subject to 
overtraining. The Python scripts used to calculate the y-scrambling results can be found from the Supporting 
Information.  
 

Experimental Data  

The data used herein was curated from sources that provide detailed information on the experimentally 
observed SoMs for substrates of human SULTs. The dataset was initially curated by Lhasa Limited 53 to support 
Meteor Nexus, 54, 55 but has been expanded for this work. Since the model is intended to distinguish the 
experimentally observed SoMs from all potential SoMs, the molecules included in the dataset have two or more 
potential SoMs, out of which at least one is experimentally observed. Any experiments run with unphysiological 
substrate concentrations were rejected; the highest accepted concentration was 100 µM or less. If there were 
conflicting reports of the metabolism of a substrate (e.g., a primary site of metabolism in one paper was not 
recognised as a site of metabolism in another paper) then the substrate was rejected. Each metabolite included 
had an experimental confirmation (e.g. using mass-spectrometry or NMR studies); we did not include 
metabolites based only on expert opinions. Initially, the aim was to obtain site-specific data for individual 
isoforms; however, it was found that isoform-specific information was very limited within the publicly available 
sources. Therefore, the data were used to train a single, general, model of SULT metabolism covering multiple 
isoforms. Such a general model is inferior to the isoform-specific models, because of the variation introduced 
by combining different regioselectivities for multiple isoforms, but our previous research has demonstrated that 
a general model can have high predictive power. 7 The literature search yielded 75 compounds with 195 potential 
SoMs, out of which 84 were observed to be metabolized. The full dataset with relevant references for the 
compounds can be found in the supporting information.  
 

Results and Discussion  

Reaction Mechanism of SULTs  

Since DFT calculations are computationally expensive compared to methods routinely applied to drug discovery 
and metabolism prediction, the system used to estimate the Ea (the reactivity) must be as small as possible but 
retain its chemical characteristics. In previous work by Bartolotti et al., the adenosine phosphate group of PAPS 
was reduced to a methyl group and the interacting lysine and histidine residues were replaced with ammonia 
molecules, as shown in Figure 2. 32 However, as mentioned before, the reaction mechanism is dissociative and 
features two transition states: the dissociation of the bond between the cofactor and the SO3 and the sulfation 
of the substrate. Between the two transition states is a minimum, where the SO3 is trigonal planar – experiments 
have shown an “inactive” crystal structure which has been observed in SULT1E1 by replacing the leaving group 
(SO3) with vanadate. 32 35 Furthermore, the dissociation can happen without the substrate; 36 thus, it can be 
presumed that the second step, sulfation of the substrate, is the rate-limiting step. The weak interactions 
between the lysine residues and the SO3 in the intermediate structure can be considered a constant (irrespective 
of the substrate). Thus, the system to estimate the Ea can be further simplified by removing the leaving group 
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and the lysine residues. The ammonia in Figure 2, which represents the histidine 108 that accepts the proton 
from the substrate, has to be changed since it is susceptible to spurious hydrogen bonds with larger substrates; 
therefore, a simplified model for histidine (the imidazole ring alone, without the peptide backbone) will be used.  

30 The resulting system includes the substrate, the SO3, and the simplified histidine, as illustrated in Figure 3. We 
note that we explored alternatives to the reaction mechanism proposed by Bartolotti et al.,  32 because other 
sources have proposed that the reaction mechanism could be SN2. 18, 33 However, after exhaustive investigations 
(not included within this work) using the complete PAPS structure and a variety of simplified versions, we did 
not identify any structures which would converge into a valid transition state. Thus, we continued with the 
reaction system in Figure 3 (an example with Propofol).  

  
Figure 3. The simplified transition state for sulfation. The substrate shown is Propofol. 56  
 
In an ideal case, the preliminary study for testing the chosen simplification includes calculating the Ea for small 
and similar substrates for which the maximum reaction rate (Vmax) has been measured within the same isoform. 
Such a scenario allows us to assess the correlation between the Ea and Vmax, while minimizing the effects arising 
from variations in the the protein environment (steric and orientation effects). If Vmax data are not available for 
the chosen compounds, the Ea value can also be compared to the order of observed SoMs – does the primary 
SoM have the lowest Ea etc.? 7, 30 However, for SULTs, the Vmax values are often not reported, and the isoform 
responsible for metabolism is not known. Therefore, we will compare the order of the observed SoMs to the 
order of the calculated Ea values. In the following example, we chose five compounds (Figure 4) for a preliminary 
study using DFT to confirm that the SoMs with the lowest Ea values correspond to the experimentally observed 
SoMs, and that the system is not biased towards alcohols or phenols.  

  
Figure 4. The SULT substrates used to study if Ea can be used to predict the experimentally observed SoMs. The 
molecules are (a) metabolite of Carisbamate, 57 (b) Propofol, 56 (c) Ethinyl Estradiol, 58 (d) Allitinib, 59 and (e) 
Indazole-Cl 60 The green circles represent experimentally observed sites of metabolism and the blue circles 
represent potential SoMs which are not observed in practice. 
  
The results of the DFT study are shown in Table 2. These preliminary results do not show the desired clear 
relationship between the Ea and the experimentally determined SoMs metabolism (unlike the results in our 
previous studies of other drug-metabolizing enzymes 30). In cases where the Ea agrees with the experimental 
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SoMs, the differences between the Ea values for potential SoM within a molecule were too small to distinguish 
between the sites clearly. While the spurious long-range interactions between the substrates and the SO3 could 
account for some of this lack of correlation, taking weak interactions into account did not improve the 
relationship with the compounds in the preliminary study. Hence the study was expanded to all the available 
substrates.  
 
Table 2. The DFT study results; green indicates when the calculated Ea agrees with the experimental results and 
blue is used when it does not.   

Molecule  Experimental Result  Ea (kJ mol–1)  
Ea without weak 

interactions (kJ mol–1)  

Carisbamate  
Metabolized  58.9  128.4  

Not Metabolized  36.1  106.0  

Propofol  
Metabolized  39.4  73.9  

Not Metabolized  28.2  76.9  

Ethinyl  
Metabolized  49.3  78.4  

Not Metabolized  66.8  124.3  

Allitinib  
Metabolized  51.0  125.7  

Not Metabolized  51.9  114.8  

Indazole-Cl  
Metabolized  58.6  66.7  

Not Metabolized  59.4  77.8  

  
 
To enable all 75 compounds (199 potential SoMs) to be examined in a reasonable timeframe, we calculated the 
Ea using the semi-empirical AM1 method. However, to ensure the validity of this approach, we first confirmed 
that the DFT Ea values correlated with the ones calculated using AM1 for a set of alcohols and phenols. This was 
done by calculating the Ea for a set of compounds with both the DFT and the AM1 semi-empirical method and 
assessing the correlation between the two. The compounds do not have to be SULT substrates, but they should 
be small to avoid extraneous inter- and intramolecular interactions, and they should represent various potential 
environments for alcohols and phenols. We chose ethanol, trichloroethanol, phenylmethanol, 4-
chlorocyclohexyl methanol, and 1,2-dihydro-4-pyridinylmethanol to represent alcohols and phenol, 4-
chlorophenol, 4-chloro-1-naphthol, 2,6-dimethylphenol, and 1-naphthol to represent phenols.  
 
The correlation results were excellent with an R2 of 0.97. However, contrary to the Ea values for the potential 
SoMs for UGT, 7 the Ea values for alcohols are lower than the Ea values for phenols. Furthermore, the spread of 
the SULT Ea values for the simplified model is very small (20 – 55 kJ mol–1) compared to the spread of the UGT 
Ea values for the simplified model (155 – 375 kJ mol–1) 7.  
 
While the correlation results were excellent, it can be seen in Figure 5 that the data points are not close to the 
identity line, and the slope of the trendline is less than one. In many cases, the semi-empirical methods are 
subject to systematic errors due to the approximations they make to the Hamiltonian. Therefore, for the semi-
empirical methods to be used confidently, corrections to account for these systematic errors are calculated by 
correlating the Ea values obtained with semi-empirical methods to the Ea values obtained with DFT. The 
correction factor is found by using the best fit line equation.  
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Figure 5. The correlation between DFT and semi-empirical methods. The red dots represent alcohols, the green 
dots represent phenols, the light blue dotted line represents the trendline and the black dotted line represents 
the identity line. The blue dots represent the data points after correcting them using the best fit line equation 
(1.2872x + 8.695).  
 
Applying the respective correction factors to the Ea values of different SoM environments, obtained using AM1, 
makes them more accurate. However, out of the 75 cases, the lowest corrected Ea corresponded to the 
experimentally observed SoM  in only 52% of the cases. The result is surprising because the corresponding value 
for UGT1A1, using a UGT-specific simplified reaction mechanism, was 82%. 7  
 
The results indicate that either the simplified transition state model does not adequately represent the 
energetics of the full system or, unlike other drug-metabolising enzymes we have studied, the SoM preference 
of SULTs does not depend on Ea. Since our calculated results agree with the previously published reaction 
mechanism 32, which in turn is consistent with the experiments 35, 36 we are inclined to accept that the SoM 
preference for SULTs does not depend on the Ea. Furthermore, the experimental studies using protein sequences 
in the substrate binding site of the enzyme have indicated that the enzymatic characteristics (regioselectivity) 
may correlate with the substrate-binding site confirming the results within this study. 24, 61 In conclusion, the low 
Ea values, small spread of the Ea values, weak correlation between the Ea and the experimentally determined 
SoMs metabolism, and previously published experimental results suggest that the SoM preference depends 
more on the structure of the substrate-binding site and hence the accessibility of the SoM.  
 

Accessibility Model for SULTs  

Since the previous results indicate that Ea values are not necessary to train the model, we explored the potential 
to build a model to predict SoMs using only the steric and orientation descriptors.  5 The data was split as 
explained in the Methodology section and is illustrated in Figure 6. 7, 62  
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Figure 6. A chemical space plot representing the SULT substrates used for model training and test. The light blue 
circles represent 1300 launched drugs, the dark blue circles represent the compounds in the training set, and 
the red crosses represent the compounds in the test set. Each compound is represented by a point and the 
similarity between compounds by their proximity. These similarities are calculated using the Tanimoto similarity 
coefficient and a 2D path-based fingerprint. The chemical spaces were created in StarDrop, which using an 
approach known as t-distributed Stochastic Neighbour Embedding 62 – a nonlinear dimensionality reduction 
algorithm ideally suited to visualizing high-dimensional data in two dimensions.  
 
The kappa value for the RF SULT model on the independent test set is 0.71, and the balanced accuracy is 0.85. 
The confusion matrix for the test set is shown in Figure 7. The result can be considered to be excellent, because 
the model was trained on data covering multiple isoforms and the accuracy is comparable to our previously 
published isoform- specific models of UGT metabolism. 7 While the experimental data for SULTs, in most cases, 
did not specify individual isoforms, it is likely that the model achieved such an excellent result because the 
experimental data mostly consists of results for a small number of prevalent isoforms. It is notable that including 
the Ea values in the training process resulted in a model with a lower kappa value on the independent test set 
(kappa of 0.65).  
 
We built 1000 y-scrambled models and the results had an average kappa value of –0.01 and a median of 0.00., 
confirming that the SULT model does not depend on spurious correlations between the observed experimental 
results and the  descriptors.  

  
Figure 7. The confusion matrix for the test set of the SULT accessibility model.  
 
Studying the dataset using a leave-cluster-out split method can give a useful insight into the transferability of 
the model between chemistries. The SULT substrates did not form distinct clusters, but we classified them into 
seven approximate clusters seen in Figure 8.  
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For each cluster, we used the SoMs of molecules in the cluster as a test set and the SoMs of the remaining 
compounds as a training set. The kappa values for clusters I, II, III, IV, V, VI, VII are 0.37, 0.42, 0.37, 0.43, 0.12, 
0.55, and 0.38 respectively. It is expected that the results are lower and vary, especially because of the small 
number of compounds in each cluster, but the kappa value for the cluster V was notably lower than the overall 
model and other clusters. The poor result for cluster V is surprising, as Figure 8 shows, the molecules in cluster 
V are similar to other molecules in the dataset. However, it is possible that cluster V bundles compounds with 
uncharacteristic properties, which make it harder to predict the observed SoM. The results of the seven clusters 
can be explained; if the model is based only on structural descriptors it will not be as transferable as a model 
which include the Ea as a descriptor – the Ea  is calculated with quantum mechanics, which is universally 
applicable (subject to the limitations of semi-empirical methods). Thus, the model achieves excellent results only 
when the training set includes a wide variety of structures.  

  
Figure 8. The chemical space of SULT substrates and the respective clusters with an randomly chosen example 
from each cluster. Each compound is represented by a point and the similarity between compounds by their 
proximity. These similarities are calculated using the Tanimoto similarity coefficient and a 2D path-based 
fingerprint. The chemical spaces were created in StarDrop, which using an approach known as t-distributed 
Stochastic Neighbour Embedding 62 – a nonlinear dimensionality reduction algorithm ideally suited to visualizing 
high-dimensional data in two dimensions.  
 
Nonetheless, because the overall model was trained on a broad range of known SULT substrates and SoMs, we 
anticipate that it will be widely applicable to new compounds that are likely to be metabolised by SULTs. The 
model also provides a measure of its domain of applicability, so it can identify compounds and SoMs for which 
it cannot be confidently applied.  
 

Conclusions  

This paper described the prediction of the regioselectivity of metabolism by human SULTs. The resulting model 
shows excellent performance and good agreement between the experimentally observed and predicted data 
points. To our knowledge, previous models for SULT predict if a compound is a substrate or an inhibitor to the 
SULTs, and not the SoM. 63-66 Thus, the current work expands the capabilities of predictive models of SULT 
metabolism. The kappa value, balanced accuracy, sensitivity and specificity for the model are 0.71, 0.85, 0.94 
and 0.76, respectively.  
 
Unlike other predictive models we have published 5, 7, the SULT model does not use the results from simulations 
of the catalytic mechanism. On the contrary, the current study suggests that while the mechanism of sulfation 
is interesting, its energetics play a negligible role in the prediction of regioselectivity of SULTs. Leaving out the 
mechanism-specific descriptor, Ea, from the model has no impact on its performance. The insignificance of the 
Ea is probably because the SO3 is a good leaving group, due to its stabilizing resonance. Furthermore, the 
intermediate structure, in which the SO3 has left the PAPS is stabilized by SULT protein residues. Thus, the Ea 
values for breaking the bond with PAPS and forming a bond with the substrate are very low (around 29 and 8 kJ 
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mol–1 respectively for the system used by Bartolotti et al. 32) and have a small spread. In conclusion, the 
calculations suggest that the SoM preference depends on the steric and orientation factors, which is consistent 
with the published experimental results 24, 35, 36, 61, 67. Because the model is based solely on structural descriptors 
and not strongly influenced by the reaction energetics, we expect that it will not be as transferable as models 
trained using data from the simulations of the catalytic mechanism. However, because SULT models do not need 
extensive quantum mechanical calculations, the models are very fast.  
 
Future work for SULTs will entail gathering isoform-specific data and trying to predict regioselectivity for specific 
isoforms, in particular 1A1 and 1E1. Since the results from a general model are in good agreement with the 
experimental data, we would anticipate that the models for individual isoforms would be further improved. 
Furthermore, training data for additional SULT substrates will further expand the domain of applicability of the 
models.  
  
   

Ancillary Information  

Supporting Information Availability:   
(1) A PDF file with DOI strings for experimental data points, Cartesian coordinates, examples of input files, and 
additional data.  
Corresponding Author Information:   
Mario Öeren, mario@optibrium.com  
Matthew D. Segall, matthew.segall@optibrium.com  
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Data and Software Availability  

The data sets (training and test set) used to train the SULT model can be found in the Supporting Information 
(„1. SULT General Training Set.txt“ and „2. SULT General Test Set.txt“). The training and test sets used for the 
leave-cluster-out split method can be found in the Supporting Information as comma separated value files and 
are bundled together with the Python scripts („Python Scripts.zip”). The references for the experimentally 
observed sites of metabolism can be found in the Supporting Information („references.txt”). These files will 
include SMILES strings for the compounds, atom indices corresponding to a potential site of metabolism within 
the SMILES string, experimental results (is a site observed to get metabolized), DOI numbers for references, and 
the atom-pair fingerprints.  
 
The 3D structures were generated with Avogadro, which is available for download at https://avogadro.cc/ or 
with software from OpenEye (https://www.eyesopen.com/). It must be mentioned that software from OpenEye 
was used to convert SMILES into 3D structures, but Avogadro can also be used for it. The DFT calculations were 
done using NWChem, which is available for download at https://nwchemgit.github.io/. The semi-empirical 
calculations were done using CP2K, which is available for download at https://www.cp2k.org/.  
The atom-pair fingerprints for all potential sites of metabolism were generated using RDKit, which is available 
for download at https://www.rdkit.org/. The models were trained using StarDrop 
(https://optibrium.com/stardrop), but we have provided Python scripts („Python Scripts.zip” in the Supporting 
Information) to train the models using the same parameters using Python packages NumPy 
(https://numpy.org/), pandas (https://pandas.pydata.org/), and sklearn (https://scikit-learn.org/stable/).  
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