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Introduction

Predicting sites of metabolism (SoM) enables chemists to be more efficient in
optimising the structure of new chemical entities and helps them to identify
potentially toxic metabolites early in a project. Historically, predictive models have
focused on human isoforms of the Cytochrome P450 (CYP) family of enzymes due
to their primary importance in the metabolism of drug-like compounds. However,
predictive models for other enzymes, e.g., Aldehyde Oxidases (AO), Flavin-
containing Monooxygenases (FMO), and Uridine 5’-diphospho-glucuronosyl-
transferases (UGT), are increasing in prevalence.” Here, we present models that
predict the regioselectivity of metabolism for isoforms relevant to the metabolism
of drug-like compounds in humans: AO1, FMO1, FMO3, UGT1Al, UGT1A4,
UGT1A9, and UGT2B7.

Reactivity-Accessibility Models

Our approach combines a mechanistic element to estimate the reactivity of
potential sites of metabolism with a machine learning model to capture steric
and orientation effects (accessibility) within the active site. The reactivity of a
potential SoM is described using quantum mechanical calculations that estimate
the activation energy (E,) of product formation. The accessibility descriptors
capture distances from the potential SoM to specified functional groups (e.g.,
acidic and basic groups) as counts of bonds. The reactivity and accessibility
descriptors for each potential SoM are then associated with the data from the
experiments, to build quantitative structure-activity relationship models.

Experimental Data

The data is curated from public sources that provide detailed information on the
experimentally observed SoM. Since the models are intended to distinguish the
observed SoM from all potential SoM, the molecules included in the datasets
have two or more potential SoM, out of which at least one is experimentally
observed to be metabolised. Each potential SoM on a molecule was labelled as
either experimentally observed or not by the corresponding isoform.

AO AO1 157 865 160

FMO1 56 172 56
FMO
FMO3 67 209 69
UGT1A1l 98 297 146
UGT1A4 54 146 66
UGT
UGT1AS 137 390 187
UGT2B7/ 90 223 115

Studies Using Density Functional Theory (DFT)

For DFT calculations, the simulated systems must be small, but retain their
chemical characteristics. We tested a series of simplifications for AO, FMO?, and
UGT? enzymes to ensure that the reactivity of the reaction centres was not
significantly modified. The substrate structures were not simplified, to ensure
that long-range effects within the compounds were considered. The results
were validated using experimental data on site-specific rates of metabolism.
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Figure 1. The simplified transition state for UGT and the correlation between calculated activation energy
and the reaction rate (B3LYP/SVP).
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Studies Using Semi-empirical Methods

DFT calculations can take hours to days. Therefore, to calculate reactivity within
a reasonable timeframe, we use semi-empirical methods, reducing the
calculation time to minutes. However, semi-empirical methods are known to
introduce systematic errors depending on the environment of the SoM, which
must be corrected to achieve accurate predictions.
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Figure 2. The correlation of E, between B3LYP/SVP and AM1. The blue points refer to N-glucuronidation
(primary, secondary, and tertiary amines), the red points refer to O-glucuronidation (alcohols, enols, and
phenols), and the black points refer to corrected E, for all N- and O-glucuronidation types.

QSAR Models

For small data sets, the data for each isoform was split into training and test sets
(80:20). For larger data sets, the data was split into training, validation and test
sets (70:15:15). The split was made randomly by compound; thus, all potential
SoM of one substrate were in the same subset set. The models were trained
using Gaussian Processes (GP) method in StarDrop™.
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Figure 2. The confusion matrices for the independent test sets of reactivity-accessibility models for four
UGT isoforms.
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Figure 3. The sensitivity, specificity, balanced accuracy, and kappa values of the trained models on
independent test sets.

Conclusions

The presented work adds seven novel models, which predict the regioselectivity
of metabolism for relevant enzyme families and isoforms for metabolism of
drug-like compounds. The models show excellent performance for the
prediction of the primary SoM. In combination with the existing CYP models we
can cover the majority of observed metabolic pathways.
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