

Reaction-based enumeration: Lessons learned in designing a workflow that chemists want to use

27th March 2023 – ACS National Meeting, Indianapolis – CINF

Tamsin Mansley – tamsin@optibrium.com

© 2023 Optibrium Ltd. Optibrium™, StarDrop™, Auto-Modeller™, Card View®, Glowing Molecule™, Augmented Chemistry® and Cerella™ are trademarks of Optibrium Ltd.

Agenda

- Introduction to Optibrium
- Scaffold and Reaction-based Library Enumeration
- Reaction-based Library Enumeration
 - Reactions
 - Reagents
 - Products
 - Beyond Chemistry
- Conclusions

- Optibrium creates elegant software solutions for small molecule design, optimisation and data analysis
 - R&D of novel technologies to guide decisions and improve efficiency in drug discovery
- Two platforms forming an integrated ecosystem
 - StarDrop™
 - Augmented Chemistry®
- Global customer base from top-ten pharma to small biotech and academia
 - >180 customers worldwide
 - Adoption in other chemistry fields, e.g. animal health, agrochemicals, etc.

Types of Library Enumeration

- Library enumeration involves joining fragments
 - R-groups, linkers and scaffolds
- Scaffold-based enumeration
 - Defined from the product
 - Uses pre-prepared lists of fragments
- Reaction-based enumeration
 - Defined from a reaction
 - Uses lists of reagents
 - Creates fragments on the fly

Reagent clipping

- Flexible fragment definition
 - From lists of reagents or building blocks
 Metadata retained with fragment
 - Save and reuse fragment libraries

What a Scientist Really Wants

- Importance of working with users at every step
 - Scope, test and deliver
- User-friendly, flexible workflow that meets user requirements

Reactions

- Approximately 100 pre-defined common reactions
 - Create centrally-managed and individual reaction libraries
- Import RXN files
- Edit existing reactions or define your own
 - On-the-fly
 - Save and share

Flexible Reaction Definition

- No requirement to mimic the real life lab process
- Combine multiple steps in a single enumeration

• For example, BOC-deprotection followed by amide formation

SMIRKS

- SMIRKS is the language the computer uses to define a reaction
 - [#1,#6,OH0,SH0,NH0:1][C:6](=[O:2])[C!H0:3].[O:5]=[#6:4][#6:7]>>[#1,#6,OH0,SH0,NH0:1][C:6](=[O:2])[#6:3][#6:4]([#6:7])[O:5]
- Encodes reaction, variable atoms and atom/bond constraints
- Also represent SMIRKS graphically
 - Enables graphical editing
 - Support multiple levels of understanding
- Export SMIRKS to other platforms

Reagents

- Reagent lists as StarDrop data sets
 - Minimal preparation
 - Can be reused flexibly
- Configure and filter on the fly
 - Detection of unsuitable reagents
 - Selection criteria (filters)
 - Define regioselectivity

Reagents

- Reagent lists as StarDrop data sets
 - Minimal preparation
 - Can be reused flexibly
- Configure and filter on the fly
 - Detection of unsuitable reagents
 - Selection criteria (filters)
 - Define regioselectivity

Reagents

- Reagent lists as StarDrop data sets
 - Minimal preparation
 - Can be reused flexibly
- Configure and filter on the fly
 - Detection of unsuitable reagents
 - Selection criteria (filters)
 - Define regioselectivity

Products

- Define selection criteria for products using a property, MPO score or diversity
- Include reagent metadata with products for easy ordering
- Apply to plate well locations

👯 Plate assignme	nt ×
Plate size: 12x8	~
Fill direction	
 By Row 	O By Column
• • • • • •	0 1, 1
	OK Cancel

- Speed of enumeration
- Considering the process a chemist goes through
- Metadata and reagent IDs carry through
- Methods for reagent selection to fit plate dimensions or optimize a property
 - Ability to sample library using fewest reagents.

Prioritising Reagents Using Product Properties

- Select the R-groups generating the highest scores
 - e.g 12 x R1 and 8 x R2 for a 96-well plate

Flunarizine Library

Conclusions

- Reaction-based enumeration in StarDrop's Nova[™] module is:
 - User friendly
 - o Easy to interpret
 - o Supports different levels of experience
 - Flexible
 - o Prepared reaction libraries and filters support major use cases
 - o Ability to add and customise for in-house chemistry and expertise
 - Fast
 - o Combine reactions in a single enumeration
 - o Metadata for easy inventory and building block requests
 - o Select an optimal subset of compounds for synthesis
- User feedback at every step of development is critical

Optibrium

- Fayzan Ahmed
- Matt Segall
- Ed Champness
- Peter Hunt
- Aishling Cooke

For more information and a demo visit optibrium.com/project/nova/

Celgene

- Joe McDonald
- Andrew Burritt