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Overview

e Introduction
e Alchemite™ - the unique deep learning method

e Alchemite™ Proven Success

— Regression model applications and case studies

e Categorically modelling using Alchemite™

e Conclusions
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Challenges of Using Data in Drug Discovery

e |tisimpossible to measure all of the
compounds in all assays - how to make the
most of the data available?

e The sparse and noisy nature of the data causes
common methods for predictions to struggle

e How can the limited data be used to make
better predictions for new compound designs?
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Prediction vs. Imputation

e Prediction uses input ‘features’ to predict one or more property values for a
compound, e.g. QSAR models

e Imputation is the process of filling in the gaps in sparse experimental data using

the limited results that are already available
Imputed

Descriptors Predictions Experiments Experimental data

Compounds

o

Prediction Imputation
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Alchemite™ Deep Learning Imputation
Optibrium’s exclusive partnership with Intellegens ﬁ

e Learns directly from relationships between experimental endpoints as well as SAR

— Makes better use of sparse and noisy experimental data than conventional QSAR models

e ‘Fills in” the gaps in your data and makes predictions for ‘virtual’ compounds

— Generates more accurate predictions to target high-quality compounds

Descriptors Experiments Imputed Expt. Data

Compounds

Whitehead et al. J. Chem Inf. Model. (2019) 59(3) pp. 1197-1204, Irwin et al. J. Chem. Inf Model. (2020) 60(6), pp. 2848—2857 ”gptlbr“lum
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e Learns directly from relationships between experimental endpoints as well as SAR

— Makes better use of sparse and noisy experimental data than conventional QSAR models
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Alchemite™ Deep Learning Imputation
Optibrium’s exclusive partnership with Intellegens ﬁ

e Estimates uncertainty in each individual prediction
— Strong correlation between uncertainty estimates and observed accuracy on independent test sets

— Highlights the most accurate predictions on which to base decisions

e Confidently targets high-quality compounds and prioritise experimental resources

Probability
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Definitions

e Endpoint: An experimental measurement that may be made on a compound

- E.g. IG5, against a target, solubility, Cl., in human liver microsomes, C, ., in rat PK

e Imputation Model: These models generate predictions for compounds using sparse
assay data as input, in addition to molecular descriptors

— These models “fill in the gaps’ in the experimental data for compounds that have been synthesised
and tested in some assays

e Virtual Model: These models generate predictions for compounds using only
molecular descriptors as input

- These models make predictions based only on compound structure, i.e., for a compound that has
not yet been synthesised or tested
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Assessment of Results
Performance Profile

Performance Profile Across All Endpoints

Increasing overall accuracy
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Endpoints Ordered by Accuracy

R? — Coefficient of Determination (1 = perfect prediction, 0 = random, <0 = worse than random)
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Alchemite Application to Project Data

@

e Application to heterogeneous data across §.6.
two projects Constellatizn
— Target and phenotypic activities and PHARMACEUTICALS
ADME endpoints _ W Best QSAR Method Alchemite
— 2453 compounds across 18 endpoints 0.9
0.7
e Significant improvement in accuracy .
Best QSAR 0.50 01 I I
-0.1
Alchemite™ 0.72 . |
e Example of value delivered: o
- Few false negatives among confidently- £ £ 2 3|32 £ 2 2 £ £ 8 2 5 5 g8 %
predicted inactives — could have saved DAY Y - > S é % % 5 g
>5$600,000 in unnecessary synthesis o S = z 2
Irwin et al. J. Chem. Inf Model. (2020) 60(6), pp. 2848—2857
Watch our webinar: http://bit.ly/practical_deeplearning > L
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Alchemite Application to Global Pharma Data 0

e Application to large data set @ ‘ ONCOLOGY

- 678,994 compounds
- 1,116 experimental endpoints

- 2% Complete 0.9 w: 0.69
* Covering a full range of drug discovery 0.7 \\

: ) e . ~
assays, including compound activities and \ w, MedianR?=0.55
ADME properties 03 | Median R2=0.28 - N,

Prospective Prediction of Project Target Activities

R2

-~
. 0.1 ~\ .ﬁ. ~‘~

e Example of valge delivered: N | 01 o o I = -\1'00
- “...an extension of what medicinal chemists... "

do in a discovery project, but at much larger 03 s

“

scale than would be possible for a person.” 0.5
Endpoints Ordered by Accuracy

e Random Forest e Alchemite Imputation e Alchemite Virtual

Irwin et al. App. Al Lett. (2021) DOI: 10.1002/ail2.31
Watch our webinar: http://bit.ly/largescale_imputation
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Limitations of Regression Models

e Qualified values (continuous values 150 -

with <, > signs) are removed prior to ' 43

building the model to prevent a - '

skewed distribution “100'.

| | 50-

* Noisy data as input can lead to low- '

quality predictions _

O-Trrrrrrm
-8.2-78-74 -7-6.7-63-6-5.7-53-5-4.7-43-4

e Labelled data or inherently categorical Anti TB assay MIC (LogM)

endpoints cannot be modelled

optibriur
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Categorical Modelling Methods

 Handling qualified data
- Continuous data may contain qualified data, e.g. <, >
— Define cut-offs to “bin” the data into classes and include these values in the model

* Model building

— The library of descriptors were provided by StarDrop and consists of 10 whole molecule Descriptors and 320
Auto-Modeller descriptors based on 2D SMARTS, logP, TPSA, MW, charge etc

— Training and test sets consist of discrete values (0s and 1s) for binary categorical models
— The predictions are discrete values
— Cohen’s Kappa values are used to indicate performance

* Alchemite (imputation and virtual) categorical models were built and compared with the categorical
QSAR model

— Consistent training and test sets

— Consistent cut-offs for the same assay in the different model

optibriurm
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Deep learning methods Vs QSAR

* Application to the publicly available AZ data
set: document_chembl_id:CHEMBL3301361

- 5788 compounds

Performance profile plot

0.8

0.7
— 10 PK assays from different species

0.6

- 13% complete

* Model building
— The continuous data were “binned”

— Alchemite imputation and virtual categorical
models Vs Random Forest categorical model

Kappa Values

0.2

* Improvements in accuracy

0.1

Median Kappa Value

0

0 1 2 3 4 5 6 7 8 9
Ra ndOm ForeSt 039 01 Endpoints ordered by accuracy
Alchemite Virtual 0.44 —e—Alchemite Imputation —e—Alchemite Virtual —e—Random Forest
Alchemite Imputation 0.51
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PK Endpoint Performance - Deep learning methods vs QSAR

* Analysing the performance for each ADME/PK ;
endpoint 08
0.7 839
 PPB: Plasma protein binding 06 325
- 5 species - . -
— Alchemite Imputation model is consistently g 03
outperforming the virtual and RF models 02 II II
0.1 I
e CLint: Intrinsic clearance 0 I
: . 0.1 L e & o> O\o
- 2 different species 02,68 s o @""Q & .Q&Q %O\o N . && & ; é&
— Hepatocyte and Microsomal S dpoints & <L
X Q
Qﬁb ((\'b é‘,b
. . N N
* The number of data points in the test set m Alchemite Imputation  m Alchemite Virtual m Random Forest
are included
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Application of Categorical Modelling to Qualified Data

Categorical modelling on a global health data
set with qualified data

The data set
- 495 compounds

- 34 endpoints (in-vitro and in-vivo activity, PK and
ADME data)

Including qualified data changes the sparsity of
the overall data set from 20% to 30% data points
present

More data leads to a wider chemical spaces and
a more accurate model
— Alchemite imputation and virtual categorical

models were built on the datasets with and
without the qualified data included

— Anti-TB MIC (LogM) assays showed the greatest
improvements for the imputation methods with
the additional qualified data included

© 2023 Optibrium Ltd.
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Conclusions

* Advantages of Alchemite deep learning imputation
— Gains more value than prediction from experimental data
— OQOutperforms traditional QSAR methods

* We have demonstrated the successful application of Alchemite in a range of categorical
modelling scenarios

- Heterogenous data across multiple drug discovery endpoints
— Sparse data sets
— Large data sets with qualified data

* The categorical feature of Alchemite has shown success where regression models
struggle
- Qualified data
— Labelled or classified data
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