

Application of the Alchemite deep-learning methodology to categorical modelling of PK endpoints

26th March 2023

Charlotte Wharrick

© 2023 Optibrium Ltd. Optibrium[™], StarDrop[™], Inspyra[™], Auto-Modeller[™], Card View[®], Glowing Molecule[™], Augmented Chemistry[®] and Cerella[™] are trademarks of Optibrium Ltd.

Overview

- Introduction
- Alchemite[™] the unique deep learning method
- Alchemite[™] Proven Success
 - Regression model applications and case studies
- Categorically modelling using Alchemite[™]
- Conclusions

Challenges of Using Data in Drug Discovery

 It is impossible to measure all of the compounds in all assays - how to make the most of the data available?

• The sparse and noisy nature of the data causes common methods for predictions to struggle

• How can the limited data be used to make better predictions for new compound designs?

Augmented Chemistry

Prediction vs. Imputation

- Prediction uses input 'features' to predict one or more property values for a compound, e.g. QSAR models
- Imputation is the process of filling in the gaps in sparse experimental data using the limited results that are already available

- Learns directly from relationships between experimental endpoints as well as SAR
 - Makes better use of sparse and noisy experimental data than conventional QSAR models
- 'Fills in' the gaps in your data and makes predictions for 'virtual' compounds
 - Generates more accurate predictions to target high-quality compounds

Whitehead *et al.* J. Chem Inf. Model. (2019) **59**(3) pp. 1197-1204, Irwin *et al.* J. Chem. Inf Model. (2020) **60**(6), pp. 2848–2857

- Learns directly from relationships between experimental endpoints as well as SAR
 - Makes better use of sparse and noisy experimental data than conventional QSAR models
- 'Fills in' the gaps in your data and makes predictions for 'virtual' compounds
 - Generates more accurate predictions to target high-quality compounds

Whitehead *et al.* J. Chem Inf. Model. (2019) **59**(3) pp. 1197-1204, Irwin *et al.* J. Chem. Inf Model. (2020) **60**(6), pp. 2848–2857

- Estimates uncertainty in each individual prediction
 - Strong correlation between uncertainty estimates and observed accuracy on independent test sets
 - Highlights the most accurate predictions on which to base decisions
- Confidently targets high-quality compounds and prioritise experimental resources

Whitehead et al. J. Chem Inf. Model. (2019) **59**(3) pp. 1197-1204, Irwin et al. J. Chem. Inf Model. (2020) **60**(6), pp. 2848–2857

Definitions

- Endpoint: An experimental measurement that may be made on a compound
 - E.g. IC₅₀ against a target, solubility, Cl_{int} in human liver microsomes, C_{max} in rat PK
- Imputation Model: These models generate predictions for compounds using sparse assay data as input, in addition to molecular descriptors
 - These models 'fill in the gaps' in the experimental data for compounds that have been synthesised and tested in some assays
- Virtual Model: These models generate predictions for compounds using only molecular descriptors as input
 - These models make predictions based only on compound structure, i.e., for a compound that has not yet been synthesised or tested

R² – Coefficient of Determination (1 = perfect prediction, 0 = random, <0 = worse than random)

Regression Models

Alchemite Application to Project Data

- Application to heterogeneous data across two projects
 - Target and phenotypic activities and ADME endpoints
 - 2453 compounds across 18 endpoints
- Significant improvement in accuracy

	Average R ²
Best QSAR	0.50
Alchemite™	0.72

- Example of value delivered:
 - Few false negatives among confidentlypredicted inactives – could have saved
 \$600,000 in unnecessary synthesis

Irwin *et al.* J. Chem. Inf Model. (2020) **60**(6), pp. 2848–2857 Watch our webinar: http://bit.ly/practical_deeplearning

Alchemite Application to Global Pharma Data

- Application to large data set
 - 678,994 compounds
 - 1,116 experimental endpoints
 - 2% complete
- Covering a full range of drug discovery assays, including compound activities and ADME properties
- Example of value delivered:
 - "...an extension of what medicinal chemists... do in a discovery project, but at much larger scale than would be possible for a person."

ONCOLOGY

Prospective Prediction of Project Target Activities

• Random Forest • Alchemite Imputation • Alchemite Virtual

Irwin *et al.* App. Al Lett. (2021) DOI: 10.1002/ail2.31 Watch our webinar: http://bit.ly/largescale_imputation

- Qualified values (continuous values with <, > signs) are removed prior to building the model to prevent a skewed distribution
- Noisy data as input can lead to lowquality predictions

• Labelled data or inherently categorical endpoints cannot be modelled

Application of Categorical Modelling

Categorical Modelling Methods

- Handling qualified data
 - Continuous data may contain qualified data, e.g. <, >
 - Define cut-offs to "bin" the data into classes and include these values in the model
- Model building
 - The library of descriptors were provided by StarDrop and consists of 10 whole molecule Descriptors and 320 Auto-Modeller descriptors based on 2D SMARTS, logP, TPSA, MW, charge etc
 - Training and test sets consist of discrete values (0s and 1s) for binary categorical models
 - The predictions are discrete values
 - Cohen's Kappa values are used to indicate performance
- Alchemite (imputation and virtual) categorical models were built and compared with the categorical QSAR model
 - Consistent training and test sets
 - Consistent cut-offs for the same assay in the different model

Deep learning methods Vs QSAR

- Application to the publicly available AZ data set: *document chembl id:CHEMBL3301361*
 - 5788 compounds
 - 10 PK assays from different species
 - 13% complete
- Model building
 - The continuous data were "binned"
 - Alchemite imputation and virtual categorical models Vs Random Forest categorical model
- Improvements in accuracy

Median Kappa Value

Random Forest	0.39
Alchemite Virtual	0.44
Alchemite Imputation	0.51

PK Endpoint Performance - Deep learning methods vs QSAR

- Analysing the performance for each ADME/PK endpoint
- PPB: Plasma protein binding
 - 5 species
 - Alchemite Imputation model is consistently outperforming the virtual and RF models
- CL int: Intrinsic clearance
 - 2 different species
 - Hepatocyte and Microsomal
- The number of data points in the test set are included

Application of Categorical Modelling to Qualified Data

- Categorical modelling on a global health data set with qualified data
- The data set
 - 495 compounds
 - **34** endpoints (in-vitro and in-vivo activity, PK and ADME data)
- Including qualified data changes the sparsity of the overall data set from 20% to 30% data points present
- More data leads to a wider chemical spaces and a more accurate model
 - Alchemite imputation and virtual categorical models were built on the datasets with and without the qualified data included
 - Anti-TB MIC (LogM) assays showed the greatest improvements for the imputation methods with the additional qualified data included

■ Virtual (with qualifiers) ■ Virtual (removed qualifiers)

Conclusions

- Advantages of Alchemite deep learning imputation
 - Gains more value than prediction from experimental data
 - Outperforms traditional QSAR methods
- We have demonstrated the successful application of Alchemite in a range of categorical modelling scenarios
 - Heterogenous data across multiple drug discovery endpoints
 - Sparse data sets
 - Large data sets with qualified data
- The categorical feature of Alchemite has shown success where regression models struggle
 - Qualified data
 - Labelled or classified data

Matt Segall

Samar Mahmoud

Bailey Montefiore

Peter Hunt

Ben Irwin

intellegens

Gareth Conduit

Tom Whitehead

Thomas Bridge

optibrium

For more information visit www.optibrium.com