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ABSTRACT: Unexpected metabolism in modification and conjugation
phases can lead to the failure of many late-stage drug candidates or even
withdrawal of approved drugs. Thus, it is critical to predict the sites of
metabolism (SoM) for enzymes, which interact with drug-like molecules, in
the early stages of the research. This study presents methods for predicting
the isoform-specific metabolism for human AOs, FMOs, and UGTs and
general CYP metabolism for preclinical species. The models use semi-
empirical quantum mechanical simulations, validated using experimentally
obtained data and DFT calculations, to estimate the reactivity of each SoM
in the context of the whole molecule. Ligand-based models, trained and tested using high-quality regioselectivity data, combine the
reactivity of the potential SoM with the orientation and steric effects of the binding pockets of the different enzyme isoforms. The
resulting models achieve κ values of up to 0.94 and AUC of up to 0.92.

■ INTRODUCTION
The characterization of xenobiotic metabolism using in silico
methods enables chemists to predict sites of metabolism
(SoM) of potential drug candidates, agrochemicals, nutritional
supplements, and cosmetics. Therefore, optimizing the
structure of new chemical entities can be more cost-effective,
and toxic metabolites can be identified early in the project.1,2

Historically, predictive models have targeted the metabolism
by human isoforms of the Cytochrome P450 (CYP) family of
enzymes due to their irrefutable importance in the metabolism
of drug-like compounds in the modification phase (Phase I).3

However, studies on how to predict metabolism for other
modification phase enzymes, such as aldehyde oxidases
(AO)4,5 and flavin-containing monooxygenases (FMO),6 and
conjugation phase (Phase II) enzymes, such as uridine 5′-
diphospho-glucuronosyltransferases (UGT),7−11 are increasing
in prevalence.
There are many reasons why chemists are interested in

expanding their portfolio of predictive models beyond CYPs.
For example, introducing azaheterocyclic rings into com-
pounds decreases their lability toward CYP metabolism but
increases the likelihood of oxidation by AOs. The rapid
clearance of molecules by AOs (not predicted by CYP-only
modeling) has caused the discontinuation of multiple projects
during clinical trials.12−14 Similarly, the role of FMOs has been
underestimated�the chemical space of its substrates overlaps
with that of CYPs and metabolism by FMOs has sometimes
been falsely attributed to CYPs. Predicting the sites of
metabolism by FMOs would help chemists tailor compounds
to be metabolized by multiple enzyme families, thereby
avoiding drug−drug interactions, and detect potential toxic
metabolites such as sulfenic and sulfinic acids, and S-oxides

and S,S-dioxides of thiocarbonyls.15,16 Finally, UGTs are the
major enzymes contributing to the conjugation phase;
approximately 15% of known drugs are glucuronidated.17

Predicting metabolism by UGTs helps researchers to avoid the
inactivation of potential drug candidates and detect the
formation of potentially toxic acyl glucuronides.18

Despite the success of human CYP models, tests on animals
are still conducted regularly. Testing the metabolism of
potential drugs in animal models is primarily for toxicology
studies. As each animal’s metabolism is unique, the human
metabolism cannot be replicated precisely by a single
preclinical species, leading to the criterion that these trials
must be conducted in at least two mammalian species (one
rodent and one non-rodent). In silico modeling of the
metabolism of preclinical species could aid in ensuring that
the preclinical trials produce the likely human metabolites,
using the model as an indicator of the best preclinical species.
As well as the ethical benefits of this modeling approach, trials
would be quicker and less expensive.
This study aims to build models that predict the SoM for

various isoforms of AOs, FMOs, and UGTs found in humans.
In addition, the study aims to expand the existing CYP SoM
prediction models to preclinical species. The following
subsections give a brief overview of the enzymes�their
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substrate space and reaction types�and the available data for
building and validating models. Following this, we summarize
the spectra of available modeling methods, give an overview of
the existing models for the enzymes above and provide a
rationale to train new models based on the reactivity-
accessibility approach.
Aldehyde Oxidases. The existence of AOs in the liver was

predicted as early as 1936.19 However, the first time they were
isolated was in 1940 by Gordon et al.20 AOs were initially
observed to react with aldehydes, hence the name, but they are
also known to be responsible for catalyzing the oxidation of
aromatic heterocycles21 and iminium ions.22−25 It is intriguing
that AOs, which are considered to contribute to the
modification phase, have also been observed to catalyze the
reduction26 of various molecules, e.g., nitro-compounds.
However, with a few exceptions,27 the reductive metabolism
occurs at lower oxygen concentrations and is thought to play a
role in human physiology (sensing low oxygen tensions).24 In
2015, Sodhi et al. reported an additional metabolic activity
mediated by AOs�amide hydrolysis.28 It should be noted that
the prevalent chemical reaction of AOs is considered to be
oxidation and the majority of the known substrates are
azaheterocycles.25 Thus, this study concentrates on AO
oxidation, and reactions such as reduction and hydrolysis fall
out of the scope of the present work.
AOs belong to the molybdo-flavoenzyme family of enzymes

and require the Molybdenum-cofactor (MoCo) alongside
flavin adenine dinucleotide (FAD) and iron−sulfur clusters to
catalyze the aforementioned reactions.24,29 We present the
detailed catalytic cycle of AOs in the Supporting Information;
here, we concentrate on the oxidation step, which is
understood to be the rate-limiting step of catalysis (the
detailed descriptions for the catalytic cycles for CYP, FMO,
and UGT can be found from our previous publications.1,30 The
MoCo structure varies between molybdoenzymes,29 and in the
case of AOs the molybdenum atom is surrounded by bidentate
molybdopterin, double-bonded oxygen, and sulfur atoms and a
hydroxide ion. The currently accepted hypothesis, suggested
by Skibo et al.,31 states that after the substrate is bound to the
active site, the hydroxide ion of MoCo makes a nucleophilic
attack on the carbon atom of the substrate, while the proton
and two electrons (from the carbon atom) are transferred to
the sulfur atom of MoCo. Computational studies using density
functional theory (DFT) by Montefiori et al. and Alfaro et al.
have confirmed the proposed concerted reaction.14,32 The
described transition state is depicted in Figure 1.
AOs can be found in certain prokaryotes and most

eukaryotes, including mice, rats, rabbits, dogs, rhesus monkeys,
chimpanzees, and humans. Unlike CYPs, the AO family does
not have many isoforms; mice and rats have the largest number
of isoforms�four, and humans have only one (orthologous to
the Aox1 found in mice). The single isoform for humans is

found in the liver, respiratory, digestive, urogenital, and
endocrine tissues, with the majority in the liver. It is contained
in the cytosol of the cells.29

Prediction of AO-mediated reactions has become an
important avenue in drug development. Structural motifs
such as azaheterocycles, in which carbon atoms are prevalent
SoM for AOs, are common in drug-like molecules. In addition,
researchers are actively trying to reduce the CYP-mediated
metabolism, which gives rise to the increased prevalence of
other routes of metabolism. There are several examples where
AO metabolism has terminated a drug discovery program due
to high metabolic clearance (e.g., carbazeran,33 BIBX138234)
or toxicity (e.g., JNJ-3887760535).13

The first attempt to predict the SoM by AOs was by Torres
et al., who assessed the relative energy values of a simplified
tetrahedral intermediate structure for all potential SoM. The
method was very successful (considering it did not take into
account the protein structure) and had an accuracy of 93%.
The drawback of the method was its slow execution time since
it depended on the DFT method and the set of compounds for
testing was relatively small�27 compounds.4 The results were
later used by Jones and Korzekwa to predict clearance for
drugs and drug candidates metabolized by AOs36 and Xu et al.,
who built a decision tree model based on the stability of the
intermediate structure and an additional steric descriptor.37

Montefiori et al. expanded the work from using relative energy
values from the tetrahedral intermediate to calculating the
activation energy value (Ea) using a simplified MoCo. While
the activation energy was excellent in identifying the site of
metabolism, only six substrates were tested. They also tried
various other proxy descriptors (e.g., stability of the product,
ESP charges) for the Ea and found out that they were as good
but considerably faster to calculate.14 Montefiori et al.
subsequently expanded the study to a more extensive data
set (78 compounds) and used various aforementioned proxy
descriptors to build classification models. The resulting models
had receiver operating characteristic area under curve (ROC-
AUC) values of up to 0.96 and κ values of up to 0.89.5 A
notable experimental and computational study was performed
by Lepri et al., who acquired or synthesized over 270
compounds to study the oxidation of azaheterocycles and
hydrolysis of amides by AOs.12 The study yielded guidelines
for recognizing carbon atoms labile to AO metabolism and
agreed with the work of Montefiori et al.14 that the most
positively charged carbon within an azaheterocycle is the
potential site of metabolism.
Cytochromes P450s. Quantitively, the CYP enzymes are

the most important family for the metabolism of xenobiotics.
These enzymes contribute to the modification phase and are
responsible for the metabolism of 75−90% of hepatically
cleared drugs in humans.3,38,39 The catalytic action of CYPs is
predominantly that of a monooxygenase (C-hydroxylation,

Figure 1. The transition state for oxidation by AO.
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heteroatom oxygenation, dealkylation) but also includes
epoxide formation and aromatic dehalogenation, amongst
other reactions.40 As with the previous enzyme, this work will
concentrate on the most prevalent reactions, e.g., aliphatic- and
aromatic hydroxylation, aldehyde oxidation, double bond
epoxidation and N- and S-oxidation.1 The catalytic cycle for
these reactions is briefly described in the following paragraph,
but for a comprehensive overview of the catalytic cycle and the
various CYP reaction types, the reader is referred to the work
by Isin and Guengerich,40 Coon,41 Manikandan and Nagini42

and Jung.43

The catalysis by CYPs requires the haem-iron center as a
cofactor and the reduced nicotinamide adenine dinucleotide
phosphate (NADPH) as an electron donor. The rate-limiting
reaction step for CYP is presented in Figure 2. The cycle,
however, begins with the haem in its resting state; a water
molecule occupies the axial position, and the iron is in a low-
spin ferric form. The first step involves the displacement of the
axial water molecule and the association of the substrate
molecule with the FeIII (I).44 This association causes a
geometry change, and the iron is displaced below the plane of
the porphyrin, inducing a change in the spin of FeIII (low to
high) and lowering the redox potential by around 100 mV.
This change in redox potential facilitates a single electron
transfer (SET) from a redox partner (NADPH) to produce a
high-spin FeII species (II).45,46 This species binds molecular
oxygen, which oxidizes the iron back to the low-spin ferric
form (III) and the iron returns to lie within the porphyrin
plane. An additional SET yields the basic dioxo-dianion species
(IV), which is doubly protonated, leading to the fission of the
O−O bond and releasing a water molecule (V). The ferryl-oxo
compound formed in this step is commonly known as
“Compound I” and takes part in the rate-determining step.
An oxygen atom is inserted into the R−H bond in step VI.
Finally, the hydroxylated product is released, a water molecule
returns to the ferric haem’s axial position, and the starting
complex is regenerated (VII).1

The importance of CYPs in drug metabolism, coupled with a
wealth of experimental data, means that predicting the CYP
metabolism of compounds has been a priority for the
pharmaceutical industry. The natural choice was to create

models of human CYP metabolism, allowing compounds to be
screened virtually for potential metabolic liabilities. Successful
models predicting regioselectivity and isoform specificity of
CYPs for human isoforms have achieved accuracies of
approximately 90%.1,47 As discussed above, despite the success
of current CYP models, tests are still conducted regularly using
animal models, primarily for human safety. The aim is to
produce all of the likely human metabolites of a test compound
to identify any possible harmful effects in humans during later-
stage trials. Test species are chosen to fulfill a list of criteria,
including producing metabolites likely to be seen in humans,
being able to survive in a laboratory, and being practical to
handle and administer the test compound. Thus, in the current
work, we expand our previously published models1 to
preclinical species such as rats, mice, and dogs.
Flavin-Containing Monooxygenases. The discovery of

FMOs could be credited to Ziegler and Pettit, who in 1964
suggested that the oxidative N-dealkylation catalyzed in the
mammalian liver homogenates is divided into partial reactions
catalyzed by separate enzymes instead of a mixed-function
oxygenase. According to the study, the two reactions were
oxidation of the nitrogen atom and the subsequent deal-
kylation.48 In 1966, the same research group was able to isolate
the enzyme FMO, which catalyzed the oxidation of the
nitrogen atom, proving their initial theory.49 It is now known
that FMOs are able to oxidize tertiary-, secondary-, and
primary alkyl- and aryl amines, hydrazines and imidazoles.15 S-
oxidation by FMOs was proposed in 1974 by Poulsen et al.,50

and today, the following sulfur-containing groups are known to
be oxidized by FMOs: sulfides, thiols and disulfides,
thiocarbamides and thioamides, mercaptopurines, and mer-
captopyrimidine.15 In addition, FMOs have been observed to
oxidize a wide variety of atoms such as boron,51 carbon
(Bayer−Villiger oxidation),52,53 phosphorus,54 selenium55 and
iodine.15,54 Furthermore, additional reaction types observed
within humans include N-demethylation and desulfuration.16

However, the prevalent FMO-mediated metabolites are N- and
S-oxides; thus, this study concentrates on N- and S-oxidation
by FMOs.
FMOs belong to the flavoprotein family of enzymes and

require a single FAD to catalyze N- and S-oxidation. The

Figure 2. The transition state for oxidation by CYP.

Figure 3. The transition state for oxidation by FMO.

Journal of Medicinal Chemistry pubs.acs.org/jmc Article

https://doi.org/10.1021/acs.jmedchem.2c01303
J. Med. Chem. XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/doi/10.1021/acs.jmedchem.2c01303?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.2c01303?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.2c01303?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.2c01303?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.2c01303?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.2c01303?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.2c01303?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.2c01303?fig=fig3&ref=pdf
pubs.acs.org/jmc?ref=pdf
https://doi.org/10.1021/acs.jmedchem.2c01303?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


catalytic cycle begins with FMO generating a stable
peroxyflavin intermediate.56 This is performed in two steps:
first, the FAD undergoes a two-electron reduction utilizing the
NADPH, and then it reacts rapidly with molecular oxygen to
form the peroxyflavin. It is thought that FMOs in cells are
predominately in a state where the peroxyflavin is ready to
react with a substrate, and the system has been compared to a
“cocked gun”.15 The oxidation works by transferring an oxygen
atom from the peroxyflavin to the “soft-nucleophile” of the
respective substrate, forming a hydroxyflavin and an oxidized
substrate (Figure 3).30 The final parts of the cycle of catalysis
are the regeneration of FAD by releasing water and releasing
nicotinamide adenine dinucleotide phosphate (NADP+).
FMOs are an ancient gene family and can be found in all

phyla examined, including the group chordate, to which
humans belong.57 In humans, there are five functionally active
FMO isoforms, FMO1−5 and many nonfunctional pseudo-
genes (FMO6P−11P). FMOs are found in multiple tissues,
but, as with AOs, they are mostly present in the liver, with
FMO3 being the most highly expressed major contributor to
the metabolism of xenobiotics. FMO1 is found in the fetal
liver; however, this gene is switched off in the liver after birth,
and its function is subsequently replaced by FMO3 as the child
develops. FMO1 is still highly expressed in adult kidneys and is
also found in the small intestine. FMO5 is mostly found in the
liver but is also expressed in the stomach, pancreas, and small
intestine. FMO2 and FMO4 are present in very low
concentrations distributed across several organs. While more
is known about FMO2 than FMO4, their contribution to
metabolism is small, and in the case of FMO4, its contribution
is negligible, and it can be disregarded.16

Historically, FMO metabolism, which contributes to the
modification phase, has been underestimated, ignored, or
attributed to CYPs due to the overlap of their substrate
specificity. However, there are molecular entities that are
predominantly or exclusively metabolized by FMOs.58−62

Thus, disregarding FMO metabolism could lead to unexpected
paths of metabolism or, worse, toxic metabolites�e.g., FMOs
are known to produce sulfinic acids, and S-oxides and S,S-
dioxides of thiocarbonyls.15,63−67 In general, however,
metabolites produced by FMOs are considered safer than
CYP-mediated metabolites.16 Predicting metabolism by FMOs
could help researchers design drug candidates directed either
away from or toward FMO-mediated metabolism to avoid
toxic metabolites.
The number of studies regarding FMO metabolism is

growing slowly compared to AOs, CYPs, or UGTs.3 Computa-
tional studies focusing on the mechanism of N- and S-
oxidation are very scarce, with only three published studies.

There were two schools of thought as to how the substrate
oxidation step proceeds. Ottolina et al. proposed an SN2
reaction;68 however, Bach proposed that the reaction proceeds
via radical intermediates.69 The latest results in our previously
published work support the SN2 reaction mechanism.

30 Only
one model for predicting SoM for FMOs has been published
by Fu and Lin, who used descriptors derived from quantum
mechanics (e.g., Fukui reactivity indices) and circular finger-
prints to train a support-vector machine classification model.6

Uridine 5′-Diphospho-glucuronosyltransferases.
UGTs are considered the second most important enzymes
for drug metabolism, after CYPs, and the most important
enzymes of the conjugation phase. UGTs are estimated to
participate in the metabolism of 15% of hepatically cleared
drugs and approximately 40% of all conjugation reac-
tions.3,17,38,39 The UGTs have been actively studied since the
1960s, and it is one of the most actively studied enzyme
families related to the metabolism of xenobiotics, with the
number of studies dwarfed only by CYPs, reflecting their
contribution to xenobiotic metabolism.3 UGTs work by
transferring a glucuronic acid (GA) moiety to a suitable
functional group in the substrate, a reaction known as
glucuronidation. Conjugation with a GA makes the substrate
more polar; thus, in most cases, either deactivating the
substrate or making it easier for the body to eliminate it. The
most prevalent potential sites of metabolism are nitrogen
atoms of amines, amides, and N-heterocycles (N-glucuronida-
tion) and oxygen atoms of phenols, carboxylic acids, and
alcohols (O-glucuronidation).70 C- and S-glucuronides are
known but are rare.71,72 The current study concentrates only
on N- and O-glucuronidation.
UGTs are a subclass of enzymes called glycosyltransferases,

which are responsible for catalyzing the formation of glycosidic
bonds to form glycosides. In general, the glycuronosyl
reactions follow a mechanism where the sugar donor and the
substrate are bound sequentially, followed by the sugar
transfer, inverting the configuration at the anomeric center.
The product is then released, followed by the release of the
nucleotide moiety. In the case of UGTs, the sugar donor is
uridine diphosphate GA (UDP-GA).73,74 The generally
accepted reaction for UGTs follows the SN2 mechanism,
where the nitrogen or the oxygen atom attacks the anomeric
carbon of the GA, forcing the UDP to leave. Two residues of
the enzyme act as the acid and base forming a “catalytic dyad”
and stabilize the reaction as depicted in Figure 4.30,75−78

Most kingdoms in biology include species with UGTs.79 A
total of 31 UGT isoforms are found in humans�22 active
isoforms and 9 pseudogenes. Based on the sequence similarity,
the active isoforms are divided into four categories�UGT1,

Figure 4. The transition state for glucuronidation by UGTs. The residues taking part in the reaction are based on the homology model of UGT
isoform 1A1.77
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UGT2, UGT3, and UGT4. In theory, the large number of
different isoforms gives rise to broad substrate specificity, but
in practice, the substrate specificity often overlaps between the
isoforms. The isoforms can be found all over the body, ranging
from the liver to the nasal cavity.80 This work concentrates on
the first two families, especially isoforms 1A1, 1A4, 1A9, and
2B7, which are primarily expressed in the liver and are
responsible for the conjugation of the majority of xenobiotic
UGT substrates.79,81−83

The first models, which explored the isoform-specific SoM
prediction for UGTs, were published in 2006.7 Sorich et al.
developed naıv̈e Bayes classifiers, using experimental data from
the literature, for eight isoforms�1A1, 1A3, 1A4, 1A6, 1A8,
1A9, 1A10, and 2B7. Several other models8−11 have emerged
over the years, which have taken a different approach to predict
site-specificity, discarding the isoform specificity and working
with all known human UGT-catalyzed reactions. Such an
approach allows the inclusion of additional data points since
their origins are not restricted to isoform-specific studies. The
number of data points within the referenced papers varied
from around 1400 to 3300 unique SoM.
Modeling Drug Metabolism. There are many available

modeling methods for predicting metabolism, ranging from
empirical methods such as statistical modeling or machine
learning to mechanistic approaches like molecular mechanics
(MM), molecular dynamics (MD) or even quantum
mechanics (QM).84 For a model to be used for in silico
screening, it must be fast; thus, empirical models, which are
fast and relatively easy to set up (if one has enough data),
should be preferred. The downsides of such models are that
often, there are not enough data to train the model, and even
where there are sufficient data, the models are nontransferable
and qualitative. In cases where data is sparse, researchers may
look toward models built using mechanistic methods. Such
models can be built on smaller data sets, are more transferable
due to the model’s underlying physical principles and can be
quantitative. The downside of such models is the execution
time, which, even with modest methods, can be too long for
practical use.
A different method of differentiating between computational

techniques for predicting metabolism is to divide them into
two distinct categories: ligand-based and structure-based
models. In the former, structures and properties of known
substrate or nonsubstrate compounds are modeled to develop
structure−activity relationships. The second approach focuses
on the structure of the metabolizing enzyme, its known
reaction mechanisms, and its interactions with substrates.
Structure-based methods include docking,85 molecular dynam-
ics simulations,86,87 and QM/MM methods.1,88

In this work, we have chosen the ligand-based method since
the available evidence suggests that structure-based methods,
at present, have diminishing gains in accuracy and incur higher
computational costs. Furthermore, we combine elements from
the empirical modeling methods with elements from the
mechanistic approaches to derive reactivity-accessibility
models, which achieve a balance between computational cost
and accuracy for modeling metabolism and have been used
successfully by the authors of the current work1 and
others.89,90 The reactivity-accessibility approach divides the
metabolism of a compound into two parts�reactivity, which
describes the pure reactivity of the potential SoM, and
accessibility, which captures the accessibility of potential
SoM to the catalytic center within the active site of the

protein. The reactivity of a site is accounted for by calculating
the activation energy of the rate-determining step of the
corresponding reaction. This is a physical property, calculated
using fundamental and empirical physical constants, and as
such can be applied to any molecule. Furthermore, these
models use the whole substrate to account for long-range
electronic effects, which can play an important role in
determining the reactivity of sites within a molecule. This
gives the model a good domain of applicability compared with
a purely statistical model, for which the domain of applicability
is limited by the compound structures used to train the model.
Previous studies have shown that activation energy is an
important descriptor of whether a potential SoM will be
metabolized experimentally.1 The rationale is that rate of a
reaction is related to the activation energy by the Arrhenius
equation.91 Since the reaction center is conserved across all
isoforms of an enzyme class, the activation energy calculation is
not dependent on the isoform, and the activation energy
depends only on the substrate.
The accessibility of an SoM refers to how easily it may be

approached by the enzyme’s reactive center, which is affected
by many factors. In this study, steric and orientation effects
were considered�steric effects relate to features of the
substrate itself that may hinder access to the SoM, while
orientation effects capture effects of the binding site that may
orient the substrate such that some sites are far from the
reactive center. The steric aspect considers hindrance due to
the bulk (or rigid structure) of the substrate itself. The
orientation of the substrate in the binding pocket is
important�some SoM may be distant from the reactive
center in the bound conformation of the substrate�and is
affected by functionalities of the substrate and the protein, e.g.,
hydrogen bonding, electrostatic interactions, and hydro-
phobicity. The effect of these factors on the rate of metabolism
are accounted for with two-dimensional steric and orientation
descriptors that provide information about key functional
groups’ locations relative to the potential SoM. The binding
sites differ between the enzyme families and their isoforms, so
accessibility is affected by both the isoform and the substrate.
These steric and orientation descriptors require no knowledge
of the three-dimensional structure of the binding pocket (an
advantage over a docking study) and can be quickly
calculated.1 A statistical model of accessibility from the two-
dimensional (2D) steric and orientation descriptors is used to
correct the activation energies used to represent the reactivity.
For the reactivity-accessibility model, we assumed that the

compound is bound to the active site since the experimental,
site-specific data for metabolism include molecules, which are
observed to be metabolized. Site-specific information for
molecules known not to be metabolized was not considered
because it is unclear why the molecule was not metabolized; a
molecule may have a highly reactive site but would not be
metabolized if it does not reach the binding site. Whether a
compound is a substrate of a given isoform of an enzyme class
can be addressed by a separate model.92,93

■ EXPERIMENTAL DATA
The data used herein were curated from sources that provide detailed
information on the experimentally observed SoM. Since the models
are meant to distinguish the experimentally observed SoM from all
potential SoM, the molecules included in the data set, in the majority
of the cases, have two or more potential SoM, out of which at least
one is experimentally observed to be metabolized. To summarize, the
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collected compounds were labeled according to which enzyme family
and which isoform from that family is responsible for metabolizing the
molecule (note that some molecules are metabolized by multiple
isoforms or enzyme classes). Each potential SoM on a molecule was
labeled as either observed to be metabolized or not by the
corresponding isoform. The exception was the data for CYP
metabolism by preclinical species, since in most cases, the published
data did not include isoform-specific data. In this case, species-specific
SoM data was curated by aggregating the influence of several CYP
isoforms. Furthermore, compared to the other enzymes, the number
of secondary and tertiary SoM was substantial for CYP substrates;
thus, the sites were labeled as 1st, 2nd, 3rd, or “not observed” for
primary, secondary, tertiary, or not metabolized SoM, respectively. In
this curation, the emphasis was on high-quality data, retaining only
data generated with appropriate experimental conditions. The data for
AO, FMO, and UGT models were gathered only from in vitro
experiments, where it was explicitly stated which isoform was studied
(e.g., an isoform expressed in a cell line or isoform-specific
microsomes). The experiments run with unphysiological substrate
concentrations were rejected, where the lowest accepted concen-
tration was 100 μM or less. If there were conflicting reports of the
metabolism of a substrate (e.g., a primary site of metabolism in one
paper was not recognized as a site of metabolism in another paper)
then the substrate was rejected. Each metabolite included had to have
an experimental confirmation (e.g., using mass-spectrometry or NMR
studies); we did not include metabolites based only on expert
opinions. If the site of metabolism was not explicitly confirmed (e.g.,
an aromatic ring was oxidated, but the researchers were not certain,
which atom it was) then the substrate was rejected. The data for
preclinical species followed the same rules with the exception of
isoform specificity since these models were general. The four data sets
are summarized in Table 1 and the following paragraphs describe the

size and the content of the data sets for each isoform and enzyme
family. The references from which the data were obtained are listed in
the Supporting Information of this work.
For AO1, as in previous studies, all aromatic carbons are

considered potential SoM.5 The current work also included aldehyde
SoM, although there are only eight molecules in this data set with this
functionality that met the criteria for inclusion. To summarize, the
data set for AOs consists of 157 molecules and 865 potential sites, of
which 160 are observed experimentally to be metabolized: 155
primary and 5 secondary sites.
The FMO isoforms with sufficient data for building models are

FMO1 and FMO3. The potential SoM include all nitrogen and sulfur
atoms that could be oxidized according to the literature. Both the
FMO1 and FMO3 data sets have a relatively small number of
molecules (56 and 67 structures, respectively) and potential SoM
(172 potential SoM out of which 56 are metabolized by FMO1 and
209 potential SoM out of which FMO3 metabolized 69), as can be
seen in Table 1, compared to isoforms in other enzyme families.

However, according to the literature, the smaller data sets should not
hinder the model building process as FMO metabolism depends
mainly on the reactivity of the sites.15

The data set for UGT isoform UGT1A1 contains 98 molecules
with 297 potential SoM, and it features 146 potential SoM that are
glucuronidated and 151 that are not. The majority of the potential
SoM are phenols, followed by amines. The remaining SoM include
carboxylic acids, alcohols, and a small number of other SoM types,
which include nitrogen atoms. The data set for the UGT1A4 isoform
is, overall, the smallest and contains only 54 molecules. However, it is
the most balanced data set in terms of the SoM types, with amines
being the most prevalent, followed by phenols and other SoM,
including carboxylic acids and other sites which include nitrogen
atoms. The structure of the UGT1A9 data set is similar to UGT1A1,
mostly comprising phenolic SoM, followed by amines and other types.
While the UGT1A9 data set is the largest amongst UGTs (137
molecules), it features a large number of flavonoids; thus, the variation
within the neighborhood of the site types is similar to other data sets.
The data set for UGT2B7 (90 molecules) is more balanced, with
phenols still being the majority of the potential SoM, followed by
amines, alcohols, carboxylic acids, and other sites featuring a nitrogen
atom as the potential SoM.
For CYPs, three of the most common preclinical species and strains

were selected: Sprague−Dawley (rat), beagle (dog), and various
strains of mouse. Initially, the aim was to obtain site-specific rates for
individual isoforms; however, it was found that information regarding
isoforms is not commonly reported in the literature for non-human
species and, as described above, all data for non-human species were
aggregated by species and strain. Furthermore, such a wide variety of
mouse strains were used in the literature that all of these strains were
combined in this study to ensure the data set is sufficiently large for
model building. The number of substrates in the data sets for mice,
rats, and dogs is 68, 163, and 80. The data set for mice includes 617
potential SoM, out of which 108 are metabolized. The data set for rats
is the biggest, with 1428 potential SoM, out of which 305 are
metabolized. The data set for dogs features 1091 sites, out of which
154 are metabolized. Other species and strains that were considered
but found to have comparatively fewer substrates with available data
included Wistar rats, Cynomolgus monkeys, New Zealand White
rabbits, and Göttingen minipigs.
In most cases, the literature searches yielded papers, which

reported the detected metabolites as primary (1st), secondary
(2nd), or tertiary (3rd) metabolites. However, in some cases, the
papers contained the ideal data (rate of metabolism, Vmax) for each
potential site of metabolism in a molecule. Where this information
was available, the experimentally observed rates were converted into a
ranking within each molecule. The rates were ranked (i.e., 1st, 2nd,
3rd) within each molecule.
Aim of the Study. This study demonstrates the generalizability of

the reactivity-accessibility approach by training isoform-specific SoM
models for AO1, FMO1, and FMO3, and UGT1A1, UGT1A4,
UGT1A9, and UGT2B7. Furthermore, we apply the same approach
to train nonisoform-specific CYP models for preclinical species, such
as mice, rats, and dogs. The in silico models are useful for predicting
the modification and conjugation phases in humans. Modeling the
metabolism of preclinical species could aid in ensuring the preclinical
trials produce the likely human metabolites, using the model as an
indicator for selecting the best preclinical species.

■ RESULTS AND DISCUSSION
The reactivity descriptor, Ea, is calculated using semi-empirical
methods. In the following subsections, we provide a
description of how to take the systematic errors for semi-
empirical methods into account using correction factors for
each enzyme family. We then describe how the corrected Ea
values are combined with the steric and orientation descriptors
and the results from the experimental studies to build models

Table 1. The Overview of Data for Building Reactivity-
Accessibility Models

enzyme isoforma
no. of
substrates

no. of potential
SoM

no. of SoM
metabolized

AO AO1 157 865 160
FMO FMO1 56 172 56

FMO3 67 209 69
UGT UGT1A1 98 297 146

UGT1A4 54 146 66
UGT1A9 137 390 187
UGT2B7 90 223 115

CYP Mice 68 617 108
Rats 163 1428 305
Dogs 80 1091 154

aFor CYPs the species instead of isoforms are mentioned.
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for predicting the SoM. The model results are provided with
data set splits, confusion matrices, and y-scrambled values.
GP Model for AO. We obtained the simplified reaction

mechanism for the oxidation of azaheterocycles by AO from
the work of Montefiori et al.14 We describe additional work on
expanding the simplified mechanism to aldehydes in the
Supporting Information of the current study. We confirmed a
correlation between Ea values calculated with PM6 and DFT
for various SoM types to verify that PM6 is suitable for
replacing DFT. To achieve that, the SoM were divided into
seven environments for which correction factors were
calculated, as described in detail in the Supporting
Information. As can be seen from Figure 5, the initial squared
correlation coefficient increases from 0.92 to 0.97 and most of
the errors fall under 10 kJ per mol.

Applying the respective correction factors to the Ea values of
different SoM environments, obtained using PM6, makes them
directly comparable to each other because they are referencing
the DFT energy scale. Out of the 159 cases, the corrected Ea
alone was able to predict the experimentally observed primary
SoM as the site with lowest Ea in 52% of cases. Since the AO
substrates have, on average, over five potential SoM, the AUC
provides a better indication of how well Ea alone describes the
site-specificity of AOs. The average AUC for all molecules is
0.80, indicating that the Ea value is an important descriptor for
predicting the SoM of AO metabolism, but we expect that
supplementing this with the accessibility descriptors in order to
take into account the steric and orientation effects will improve
our ability to predict SoM.
The κ value for the test set for the Gaussian processes (GP)

AO model is 0.83. Ea was amongst the most important
descriptors; the most influential being the descriptor that
recognizes the site as being ortho to a σ-bonded aromatic
nitrogen atom (it is very common to azaheterocycles, which
form the majority of the compounds in the data set). The

balanced accuracy of prediction was 0.90 for the test sets. The
confusion matrix for the test set is shown in Figure 6. The y-

scrambled result had κ value of 0.05, which is considerably
lower than the results from the test set, confirming that the
models do not depend on spurious correlations between the
observed experimental results and the measured descriptors.
GP Models for FMOs. We used the simplified reaction

mechanism for calculating Ea for N- and S-oxidation by FMOs
described in our previous work.30 The initial tests, using AM1,
demonstrated the feasibility of the mechanism, but unlike the
correlation between the two methods for AOs, the correlation
between semi-empirical methods and DFT for FMOs is only
0.26. The correlation did not improve after introducing
separate correction factors for N- and S-oxidation, nor did it
improve by dividing the SoM environments into further
subenvironments (see Supporting Information). The low
correlation can be explained by a hydrogen bond, which
briefly forms between the cofactor and the leaving group
during the transition state.30 The hydrogen bond is observed in
transition states optimized by DFT; however, it often does not
form during the geometry optimization with the semi-empirical
method AM1. The bond is often missing because AM1 is not
as good at estimating the energetics of hydrogen bonding as
DFT; thus, the correlation between the two methods is weak.
For more information see Supporting Information for FMOs.
While the correlation between like-for-like sites was not

sufficiently high, both AM1 and DFT correctly identified the
experimentally observed site as that with the lowest calculated
Ea when tested on a set of substrates in the data set. The
corrected Ea alone was able to predict the experimentally
observed primary SoM as the site with lowest Ea in 82% of
cases for both FMO1 and FMO3. The AUC for both FMO1
and FMO3, for the whole data set, using AM1, was 0.91 and
0.92, respectively. Thus, the ranking of sites based on the Ea
value calculated with AM1 is reliable for the reactivity-
accessibility models. The reactivity descriptor alone could
predict the experimentally observed primary sites in most
cases.
The κ results for reactivity-accessibility GP models for

predicting the SoM for the FMO1 and FMO3 test sets are 0.88
and 0.94, respectively. The confusion matrices can be seen in
Figure 7. The balanced accuracies of the final models are 0.94
and 0.98 for FMO1 and FMO3, respectively. As with AOs, Ea
and ΔEa were amongst the most important descriptors in both
models. The y-scrambled results were 0.00 and 0.03 for FMO1
and FMO3, respectively, demonstrating that the excellent
performance of the models is unlikely due to chance
correlation.

Figure 5. Correlation between DFT and semi-empirical Ea values.
Red dots represent the Ea values, and the green points represent the
corrected Ea values. The blue line is the identity line, and the black
lines represent deviation of +10 and −10 kJ per mol from the identity
line.

Figure 6. The confusion matrix of the test set of Gaussian processes
model for AO1.
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GP Models for UGTs. As with FMOs, we used the
simplified reaction mechanism for both N- and O-glucur-
onidation identified in our previous work.30 The AM1 semi-
empirical method used for predicting FMO metabolism was
also used for UGTs; however, unlike FMOs, the correlation
between AM1 and DFT was higher�0.58 before the
corrections and 0.97 after applying the corrections (Figure
8). Interestingly, the Ea values for O-glucuronidation were

much closer to the DFT values than those for N-
glucuronidation. Thus, the correction factors for O-glucur-

onidation were very small compared to those for N-
glucuronidation. The description of SoM environments and
the derivation of the correction factors for N- and O-
glucuronidation can be found in the Supporting Information.
The AUC for the 1A1 isoform, using AM1, was 0.86. The

GP model for 1A1 yielded a κ value of 0.81 with balanced
accuracy of 0.90 (the confusion matrix for the 1A1 model can
be seen in Figure 9). The y-scrambled κ result for 1A1 was
0.12, indicating that this result was unlikely to be due to
random correlations with the data.
The AUC for the 1A4 isoform, using AM1, was 0.72, the

lowest out of all sets. Since 1A4 is specialized for the
metabolism of tertiary nitrogen atoms, it could be theorized
that the accessibility descriptors play a bigger role compared to
other UGT isoforms. The data set for building the GP model
for 1A4 had the fewest data points amongst the chosen
isoforms. The GP model had a κ value of 0.68 and a balanced
accuracy of 0.84 (the confusion matrix for the 1A4 model can
be seen in Figure 9). As before, the y-scrambled results, with a
κ value of 0.02, proved that no random correlation exists in the
data set.
The AUC for the 1A9 isoform, using AM1, was 0.78. The

data set for building the GP model for 1A9 had the largest
number of data points. This large data set yielded a result with
a κ value of 0.63 and a balanced accuracy of 0.82 (the
confusion matrix for the 1A9 model can be seen in Figure 9).
The y-scrambled results had a κ value of −0.21, confirming that
the result is unlikely to be due to chance correlations in the
data set.
The AUC for the 2B7 isoform, using AM1, was 0.87. The

Gaussian processes model yielded a κ value of 0.63 with a
balanced accuracy of 0.82 with the y-scrambled results of 0.21
(the confusion matrix for the 2B7 model can be seen in Figure
9). It is surprising that the κ value of the GP model is relatively
low, while the AUC is the highest amongst UGT data sets.
This can partly be explained by exploring the data set of 2B7;
the number of compounds in this test set is 18 while the
amount of SoM, which get metabolized is 26. In a few cases,
the model fails to recognize the secondary SoM, which in turn
lowers the κ value of the model considerably.
WLS Models for CYPs. For the CYP models a 10-fold

cross-validation weighted least squares (WLS) model was built.
The cross-validation strategy was chosen to ensure that the
model results are not dependent on a single training and
validation split of the data. For each of the 10 models, the
training and validation compounds were selected randomly,
and a WLS model was trained.
Each trained model was applied to the test set. For each

compound in the test set the model output a prediction for
each potential SoM as a floating-point number between 1 and

Figure 7. The confusion matrices of the test sets of GP models for
FMOs.

Figure 8. The correlation between DFT (B3LYP/SVP) and semi-
empirical method (AM1) for N- and O-glucuronidation. Red points
represent the uncorrected values, and green points represent the
corrected values.

Figure 9. The confusion matrices of test sets of GP models for UGTs.
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4 (where “1” indicates a primary site and “4” indicates not
metabolized). For a given site, we used consensus modeling,
where the predictions from the 10 models were averaged, and
the resulting floating-point number was used as the final
prediction.
The outputs of the model were ordered (lowest to highest)

for the sites within a given compound and the AUC under the
ROC curve calculated for each compound. The average of
these AUCs for the compounds in the test set for each species
is shown in Table 2 for the two types of activation energy
calculations. See the Supporting Information for the detailed
performances of individual models making up the 10-fold
cross-validation.

It is surprising that the accuracy of the preclinical general
CYP models is comparable to the isoform-specific human AO,
FMO, and UGT models. It is known that the pure reactivity
for the potential SoM plays a critical role in CYP metabolism,
but the highest accuracy is usually obtained by taking into
account the isoform-specific steric and orientation effects.1

While the experimental data for preclinical species did not
specify individual isoforms, it is likely that the general CYP
preclinical species models achieved such excellent results
because the experimental data mostly consist of a single or
small number of prevalent isoforms, e.g., the CYP3A family.
Thus, the steric- and orientation component accounts for the
aforementioned isoform(s).

■ CONCLUSIONS
This paper has described the prediction of the regioselectivity
of metabolism by AOs, FMOs and UGTs for humans and
CYPs for three preclinical species. The resulting models show
excellent performance for the prediction of the primary SoM
for isoforms of AOs, FMOs and UGTs for humans (Figure 10)
and the prediction of primary, secondary, and tertiary SoM of
enzyme families for mice, rats, and beagle dogs. While most of
the models presented here cannot be directly compared to the
already existing models due to their isoform-specific nature, the

overall accuracy of the presented models is comparable with
the best metabolism prediction models published. Further-
more, to the best of the authors’ knowledge, the AO1 model is
the only published model, which can predict both aldehyde-
and aromatic (hetero) cycle oxidation, and the FMO1 and
FMO3 models are the only isoform-specific FMO reactivity-
accessibility models published to date.
The predictive models are based on a detailed understanding

and simulations of the catalytic mechanisms of the respective
enzyme families. The reactivity-accessibility approach used to
build the 10 models applies semi-empirical methods to
estimate the electronic activation energy of rate-limiting steps
of the catalytic cycles. The simplified reaction mechanisms for
the rate-limiting steps for the enzyme families have been
validated previously using experimental data and DFT
calculations. The activation energy was coupled with iso-
form-specific steric and orientation effects, which arise due to
the interactions between the substrate and the binding pocket.
The methods based on quantum mechanics offer generality
and transferability since they are derived from fundamental
physical principles. Furthermore, these models use the whole
substrate molecule and consider long-range interactions, which
play an important role in differentiating between sites within a
molecule. This gives the model a good field of applicability
compared with a purely statistical model, whose field of
applicability would be limited by the chemistry used to train
the model.
The seven models for human enzymes are isoform-specific

and include the following isoforms: AO1 for AOs, FMO1, and
FMO3 for FMOs and UGT1A1, UGT1A4, UGT1A9, and
UGT2B7 for UGTs. The chosen isoforms represent the
prevalent enzymes of their respective families in the human
liver. The three models for preclinical species were for mice,
rats, and dogs, but were not isoform-specific.
The isoform specificity of the models presented herein, sets

them apart from previous studies and could be useful for
researchers studying the metabolic fate of compounds through
the modification and conjugation phases in humans.
Furthermore, the models for preclinical species could help
reduce, refine, and replace animal studies.
Future work in this field will include combining the substrate

data for multiple enzyme families into a single model to predict
which enzyme family(ies) and isoform(s) are most likely to be
responsible for the metabolism of a compound. Isoform
specificity models have already been published for CYPs,92,93

and a similar model could also be useful for UGTs. Combining
predictions of the enzyme(s) and isoform(s) responsible for
the metabolism of a compound with the SoM predictions of
the models described herein would enable the prediction of the
metabolic fate of a compound based only on its chemical
structure. The reactivity-accessibility method for modeling
drug metabolism has proved to be generalizable, adding
additional human enzymes from the conjugation phase. We
believe a similar approach can be extended to additional
enzyme families such as sulfo- and glutathione transferases.

■ EXPERIMENTAL SECTION
Reactivity-Accessibility Models. As described in the introduc-

tion, the reactivity-accessibility models consider the reactivity and
accessibility of each potential SoM of a substrate molecule. Reactivity
describes the inherent lability of a potential SoM, while accessibility
describes how easily the reactive center can approach the potential
SoM.1 In this work, the reactivity is characterized using the Ea and the

Table 2. Average AUCs of Compounds on the Test Set for
Three Species or Strains

species (strain) AUC (standard deviation)

rat (Sprague−Dawley) 0.89 (0.021)
mouse (any) 0.92 (0.012)
beagle 0.90 (0.016)

Figure 10. The sensitivity, specificity, balanced accuracy, and κ values
for human isoforms of AO, FMO, and UGT.
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ΔEa of a simplified transition state. The ΔEa specifies the difference in
Ea values between sites within a molecule. For example, the ΔEa
values for two potential sites in a molecule with the Ea values of 50
and 75 kJ mol−1 would be 0 and 25 kJ mol−1, respectively. The
simplified reaction mechanisms for AOs,14 CYPs,1 FMOs,30 and
UGTs,30 with which the Ea values are calculated, have been previously
published (with the exception of the oxidation of aldehydes, which
can be found in the Supporting Information of the current work).
However, the referenced work has used DFT to obtain the Ea values.
In the current work, semi-empirical methods such as AM194 and
PM695 are used to calculate Ea values. The semi-empirical methods
are used because they are significantly faster than ab initio methods
and therefore can be applied to an entire substrate on a routine basis.
The accessibility descriptors in this work are all based on the atom-

pair descriptor concept, where distances from the potential SoM to
specified functional groups are defined as counts of bonds. SMARTS
patterns (SMILES arbitrary target specification, where SMILES stands
for simplified molecular-input line-entry system) are used to define

the groups that describe functionalities such as acidic and basic
groups, hydrogen bond donors and acceptors, and lipophilic groups
that may interact with key residues in the active site of a protein.1 The
reactivity and accessibility descriptors for each SoM are then
associated with the data from the experiments (is a SoM observed
to be metabolized or not), which enables us to build quantitative
structure−activity relationship (QSAR) models for each aforemen-
tioned isoform or species.
Computational Methods. All potential substrate structures in

this work were generated from SMILES using OEChem from
OpenEye.96,97 Transition state structures were based on previous
work by the authors and others.1,14,30 The calculations for obtaining
the Ea values for the reactivity-accessibility models were performed
using the semi-empirical methods AM194 and PM695 using the
program package CP2K.98 AM1 was chosen to calculate the Ea values
because it had the best performance when testing it with our
benchmark calculations (not published). It was, on average, the fastest
and had the least number of failed calculations. Furthermore, it has
been successfully implemented in our previously published reactivity-
accessibility models.1 Since the simplified mechanism for AO includes
a molybdenum atom, the PM6 semi-empirical method is used for AO
models, which has the necessary parameters for this element.
In many cases, the semi-empirical methods are subject to

systematic errors due to the approximations they make to the
Hamiltonian. Therefore, for the semi-empirical methods to be used
confidently, corrections to account for these systematic errors are
calculated by correlating the Ea values obtained with semi-empirical
methods to the Ea values obtained with DFT. The potential SoM are
divided into types based on the corrections they require (e.g., aliphatic
and aromatic carbon atoms for CYP1) and the respective corrections
are applied to the Ea values. The discovered SoM types can be
recognized using SMARTS patterns and the application of corrections
can be automated.
DFT calculations, were run using the B3LYP or B3LYP-D

functionals99−103 and the def2-SVP104 basis set. An effective core
potential was used for the molybdenum atom,105 which was obtained
from the Basis Set Exchange.106 B3LYP was chosen because the
presented reaction mechanisms feature organic molecules and
geometry optimizations, including transition states, followed by
frequency calculations by hybrid GGA functionals yield similar results
to the more expensive hybrid meta-GGA functionals.107 The B3LYP-
D was used to study AO and B3LYP without the dispersion
corrections was used to study FMO and UGT (see ref 30). The
geometry optimizations were followed by frequency calculations to
verify the local minima or the transition states. The DFT calculations
were performed with the NWChem 6.8 package.108

Accessibility Descriptors. While the three-dimensional com-
pound geometries are used for Ea calculations, the accessibility
descriptors calculated are based only on the 2D compound structure.

Figure 11. The chemical space plot representing the AO1 substrates.
The light blue circles represent the 1300 launched drugs, the dark
blue circles represent the compounds in the training set, the black
triangles represent the compounds in the validation set, and the red
crosses represent the compounds in the test set.

Figure 12. The chemical space plots representing the FMO1 (left) and FMO3 (right) substrates. The light blue circles represent the 1300 launched
drugs, the dark blue circles represent the compounds in the training set, and the red crosses represent the compounds in the test set.
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This decision was made due to the limited nature of three-
dimensional descriptors�using a single conformation would not be
appropriate since a particular substrate may adopt multiple
conformations in the active site, which would require an extensive
conformational sampling or molecular dynamics calculation in situ to
average over all low-energy conformations. It should be noted that the
reactivity model is not as sensitive to conformational variation; the
energy differences between conformations cancel out because the
reactant and product calculations use the same overall conformation
of the compound. Using 2D atom-pair descriptors avoids the problem
caused by conformational variability and has proven itself on multiple
occasions.1

Machine Learning Methods. The GP method in StarDrop was
used to train the majority of models described herein. GP is a
powerful computational method for predictive QSAR modeling.
Using a Bayesian probabilistic approach, the method is widely used in
the field of machine learning but is not common in QSAR and
ADMET (absorption, distribution, metabolism, excretion, and
toxicity) modeling. This method overcomes many of the problems
of existing QSAR modeling techniques, e.g., it does not require
subjective a priori determination of parameters such as variable
importance or network architectures and it is suitable for modeling
nonlinear relationships. The method has built-in mechanisms to
prevent overtraining and does not require cross-validation. In
addition, the importance of each descriptor is reported; thus, the
impact of Ea and ΔEa can be directly measured. The details of the
theory of Gaussian processes for QSAR modeling are described in a
comprehensive study by Obrezanova et al.109

The CYP models were trained using the WLS technique110

because, unlike other enzymes, CYP substrates frequently have

multiple SoM with different relative rates (primary, secondary,
tertiary), a regression model provides greater resolution for ranking
the predicted sites. WLS is a linear regression that minimizes the
residual sum of the squared deviations between model values and
experimental data values. When fitting a line to the experimental data
points, the weights allow each type of data point to be treated
differently. The data point types that occur more frequently in the
data (nonmetabolized sites and primary sites) are given lower weight
and less common types (secondary and tertiary points) are given a
higher weight. The weighting ensures the line is not fit to maximize its
score (residual sum of squares) at the expense of the less common site
types by fitting the line very well to only the major site types.
Data Splits. For small data sets, the data obtained for each isoform

was split into training and test sets using the approximate ratio of
80:20, respectively. For larger data sets, the data were split into
training, validation and test sets using the approximate ratio of
70:15:15. The split was made by compound; thus, all potential SoM
of one substrate were either in the training, validation, or the test set.
The compounds for the sets were chosen randomly, but the
distribution of different sets was visually checked (without inspecting
the individual structures) to ensure that the chemical space of the
training set is roughly covered by the compounds in the validation
and test sets (if compounds in either validation or test sets were found
to be clustered in a specific region of chemical space, a new random
split was performed). Since the models will not be based on
molecules, but on the potential SoM within molecules, the leave-
cluster-out split method was not considered. The training sets are
used to build the model, the validation sets of larger data sets are used
to compare models built in different ways, and the test sets are used to
evaluate the model chosen in the validation step. It was ensured that

Figure 13. The chemical space plots representing the UGT1A1 (left) and UGT1A9 (right) substrates. The light blue circles represent the 1300
launched drugs, the dark blue circles represent the compounds in the training set, and the red crosses represent the compounds in the test set.

Figure 14. The chemical space plots representing the UGT1A4 (left) and UGT2B7 (right) substrates. The light blue circles represent the 1300
launched drugs, the dark blue circles represent the compounds in the training set, and the red crosses represent the compounds in the test set.
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the test sets would only contain molecules with two or more potential
SoM. The models, where the validation sets were missing, are
evaluated right after building the model and the step of comparing
models built in different ways is skipped.
The splits are illustrated using the chemical space plots, where each

compound is represented by a point and the similarity between two
compounds by their proximity. The plots have been assembled using

the compound similarity fingerprint, constructed from the 2D path-
based fingerprints, and the similarity is calculated using the Tanimoto
similarity coefficient. The chemical spaces were created using a
method called Visual Clustering in StarDrop, which uses an approach
known as t-distributed Stochastic Neighbor Embedding�a nonlinear
dimensionality reduction algorithm ideally suited to visualizing high-
dimensional data in two dimensions.111 The plots include data for
approximately 1300 launched drugs, which gives a rough measure of
the coverage of the given data sets and enables to compare different
data sets to each other.
The chemical space of the substrates for AO1 can be seen in Figure

11. Since most of the substrates of AO1 are azaheterocycles, they tend
to cover a narrow area (compared to other enzymes) on the given
chemical space. There are exceptions, which are mostly aldehydes.
The following chemical space plots, in Figure 12, are for FMO1

and FMO3. Many substrates for both isoforms overlap; thus, the plots
are very similar. Compared to AO1 chemical space, the data points for
FMOs are sparser, but the location of the points varies more.
The data for UGT1A1 and UGT1A9 have been grouped together

in Figure 13 because the enzymes are known for metabolizing
phenolic compounds. While UGT1A1 is considered to be more varied
regarding its substrates, then the data set of UGT1A9 features a
number of very similar flavonoids, which can be seen on the plot of
UGT1A9 (both training and test set data points gathered together).
Both the UGT1A4 and UGT2B7 (Figure 14) have fewer data

points compared to the previous UGT isoforms. However, the
isoforms are more geared toward N-glucuronidation and their
substrates can be found from additional areas of the chemical space
compared to the UGT1A1 and UGT1A9 isoforms.

Figure 15. The chemical space plots representing the substrates
metabolized by mice. The light blue circles represent the 1300
launched drugs, the dark blue circles represent the compounds in the
10-fold cross-validation set, and the red crosses represent the
compounds in the test set.

Figure 16. The chemical space plots representing the substrates
metabolized by rats. The light blue circles represent the 1300
launched drugs, the dark blue circles represent the compounds in the
10-fold cross-validation set, and the red crosses represent the
compounds in the test set.

Figure 17. The chemical space plots representing the substrates
metabolized by dogs. The light blue circles represent the 1300
launched drugs, the dark blue circles represent the compounds in the
10-fold cross-validation set, and the red crosses represent the
compounds in the test set.

Table 3. Approximate Ranges for Evaluating κ Values

κ value explanation

κ < 0.5 poor agreement
0.5 ≤ κ < 0.6 moderate agreement
0.6 ≤ κ < 0.8 good agreement
0.8 ≤ κ < 1.0 very good agreement
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The data sets of CYP substrates for mice, rats, and dogs are on
Figures 15, 16, and 17, respectively. Since CYPs tend to metabolize a
wide variety of compounds, then the datapoints are distributed more
equally compared to the previous plots.
Model Statistics. The statistics that are used to report the inter-

rater reliability of the Gaussian processes classification models is
Cohen’s kappa (kappa or κ). The κ value is a more robust measure
than the percentage agreement since it is robust to biases in the
representation of classes in the data set and takes into account the
possibility of the agreement occurring by chance. For convenience, we
also report balanced accuracy. Furthermore, confusion matrices for
each model are provided. The rules of how κ values were evaluated
are shown in Table 3.
The output for the CYP model differs from the other enzymes, and

is an ordered list of potential SoM within a given compound�
primary site being the first in the list, which is followed by the
secondary SoM etc. Hence, the ROC-AUC is calculated for each
compound in the set to evaluate the accuracy of the rank ordering, as
was done for the human CYP models in our previous work.1 The
AUC is also used when evaluating the importance of the Ea value
alone for each enzyme before building the reactivity-accessibility
models. A greater AUC indicates a higher performance; the maximum
possible AUC is 1 for a perfect classifier, and a value of 0.5 is
equivalent to the performance of random selection.
Ideally, a validation set is used to fine-tune the model and the test

set is used to make sure that the chosen model is predictive enough
while not overtrained. However, as noted above, some data sets within
this work are relatively limited in size and the validation set is missing.
In such cases, the κ value of the test set might be satisfactory, but to
reduce the risk of overtraining, additional tests such as y-scrambling
were used. Y-scrambling is a simple test to explore the predictive
power of a pure chance model. In y-scrambling, the values of the
experimental data (the values to be predicted) were shuffled while the
descriptor values were left intact. The scrambled data were then used
to train a QSAR model. Cohen’s κ value of an excellent model should
be considerably higher than the κ value obtained from y-scrambling,
which should be close to zero. Such tests are necessary because each
data point has hundreds of descriptors that might correlate by chance.
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