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Abstract 
Unexpected metabolism in modification and conjugation phases can lead to the failure of many late-stage drug 
candidates or even withdrawals of approved drugs. Thus, it is critical to predict the sites of metabolism (SoM) 
for enzymes, which are known to interact with drug-like molecules, in the early stages of the research. The study 
presents methods for predicting the isoform-specific metabolism for human AOs, FMOs and UGTs and general 
CYP metabolism for pre-clinical species. The models use semi-empirical quantum mechanical simulations, 
validated using experimentally obtained data and DFT calculations, to estimate the reactivity of each SoM in the 
context of the whole molecule. Ligand-based models, trained and tested using high-quality regioselectivity data, 
combine the reactivity of the potential SoM with the orientation and steric effects of the binding pockets of the 
different enzyme isoforms. The resulting models achieve kappa values of up to 0.94 and AUC of up to 0.92. 
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Introduction 
The characterisation of xenobiotic metabolism using in silico methods enables chemists to predict sites of 
metabolism (SoM) of potential drug candidates, agrochemicals, nutritional supplements, and cosmetics. 
Therefore, optimising the structure of new chemical entities can be more cost-effective and toxic metabolites 
can be identified early in the project. [1, 2] Historically, predictive models have targeted the metabolism by 
human isoforms of the Cytochrome P450 (CYP) family of enzymes due to their irrefutable importance in the 
metabolism of drug-like compounds in the modification phase (Phase I). [3] However, studies on how to predict 
metabolism for other modification phase enzymes, such as Aldehyde Oxidases (AO) [4, 5] and Flavin-containing 
Monooxygenases (FMO) [6], and conjugation phase (Phase II) enzymes, such as Uridine 5’-diphospho-
glucuronosyltransferases (UGT) [7, 8, 9, 10, 11], are increasing in prevalence. 

There are many reasons why chemists are interested in expanding their portfolio of predictive models beyond 
CYPs. For example, introducing azaheterocyclic rings into compounds decreases their lability towards CYP 
metabolism but increases the likelihood of oxidation by AOs. The rapid clearance of molecules by AOs (not 
predicted by CYP-only modelling) has caused the discontinuation of multiple projects during clinical trials. [12, 
13, 14] Similarly, the role of FMOs has been underestimated – the chemical space of its substrates overlaps with 
that of CYPs and metabolism by FMOs has sometimes been falsely attributed to CYPs. Predicting the sites of 
metabolism by FMOs would help chemists tailor compounds to be metabolised by multiple enzyme families, 
thereby avoiding drug-drug interactions, and detect potential toxic metabolites such as sulfenic and sulfinic 
acids, and S-oxides and S,S-dioxides of thiocarbonyls. [15, 16] Finally, UGTs are the major enzymes contributing 
to the conjugation phase; approximately 15% of known drugs are glucuronidated. [17] Predicting metabolism 
by UGTs helps researchers to avoid the inactivation of potential drug candidates and detect the formation of 
potentially toxic acyl glucuronides [18]. 

Despite the success of human CYP models, tests on animals are still conducted regularly. Testing the 
metabolism of potential drugs in animal models is primarily for toxicology studies. As each animal’s metabolism 
is unique, the human metabolism cannot be replicated precisely by a single pre-clinical species, leading to the 
criterion that these trials must be conducted in at least two mammalian species (one rodent and one non-
rodent). In silico modelling of the metabolism of pre-clinical species could aid in ensuring the pre-clinical trials 
produce the likely human metabolites, using the model as an indicator for the best pre-clinical species. As well 
as the ethical benefits of this modelling approach, trials would be quicker and less expensive. 

This study aims to build models that predict the SoM for various isoforms of AOs, FMOs, and UGTs found in 
humans. In addition, the study aims to expand the existing CYP SoM prediction models to preclinical species. 
The following subsections give a brief overview of the enzymes – their substrate space and reaction types – and 
the available data for building and validating models. Following this, we summarise the spectra of available 
modelling methods, give an overview of the existing models for the enzymes above and provide a rationale to 
train new models based on the reactivity-accessibility approach. 

Aldehyde Oxidases 

The existence of AOs in the liver was predicted as early as 1936. [19] However, the first time they were isolated 
was in 1940 by Gordon et al. [20] AOs were initially observed to react with aldehydes, hence the name, but they 
are also known to be responsible for catalysing the oxidation of aromatic heterocycles [21] and iminium ions. 
[22, 23, 24, 25] It is intriguing that AOs, which are considered to contribute to the modification phase, have also 
been observed to catalyse the reduction [26] of various molecules, e.g. nitro-compounds. However, with few 
exceptions, [27] the reductive metabolism occurs at lower oxygen concentrations and is thought to play a role 
in human physiology (sensing low oxygen tensions). [24] In 2015 Sodhi et al. reported an additional metabolic 
activity mediated by AOs – amide hydrolysis. [28] It should be noted that the prevalent chemical reaction of AOs 
is considered to be oxidation and the majority of the known substrates are azaheterocycles. [25] Thus, this study 
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concentrates on AO oxidation, and reactions such as reduction and hydrolysis fall out of the scope of the present 
work. 

AOs belong to the molybdo-flavoenzyme family of enzymes and require the Molybdenum-cofactor (MoCo) 
alongside flavin adenine dinucleotide (FAD) and iron-sulfur clusters to catalyse the aforementioned reactions. 
[24, 29] We present the detailed catalytic cycle of AOs in the Supporting Information; here, we concentrate on 
the oxidation step, which is understood to be the rate-limiting step of catalysis (the detailed descriptions for the 
catalytic cycles for CYP, FMO, and UGT can be found from our previous publications [1] and [30]). The MoCo 
structure varies between molybdoenzymes, [29] and in the case of AOs the molybdenum atom is surrounded by 
bidentate molybdopterin, double-bonded oxygen and sulfur atoms and a hydroxide ion. The currently accepted 
hypothesis, suggested by Skibo et al., [31] states that after the substrate is bound to the active site, the hydroxide 
ion of MoCo makes a nucleophilic attack on the carbon atom of the substrate, while the proton and two 
electrons (from the carbon atom) are transferred to the sulfur atom of MoCo. Computational studies using 
density functional theory (DFT) by Alfaro et al. and Montefiori et al. have confirmed the proposed concerted 
reaction. [32, 14] The described transition state is depicted in Figure 1. 

 

Fig. 1 The transition state for oxidation by AO. 

AOs can be found in certain prokaryotes and most eukaryotes, including mice, rats, rabbits, dogs, rhesus 
monkeys, chimpanzees, and humans. Unlike CYPs, the AO family does not have many isoforms; mice and rats 
have the largest number of isoforms – four, and humans have only one (orthologous to the Aox1 found in mice). 
The single isoform for humans is found in the liver, respiratory, digestive, urogenital and endocrine tissues, with 
the majority in the liver. It is contained in the cytosol of the cells. [29] 

Prediction of AO-mediated reactions has become an important avenue in drug development. Structural motifs 
such as azaheterocycles, in which carbon atoms are prevalent SoM for AOs, are common in drug-like molecules. 
In addition, researchers are actively trying to reduce the CYP-mediated metabolism, which gives rise to the 
increased prevalence of other routes of metabolism. There are several examples where AO metabolism has 
terminated a drug discovery program due to high metabolic clearance (e.g. carbazeran [33], BIBX1382 [34]) or 
toxicity (e.g. JNJ-38877605 [35]). [13] 

The first attempt to predict the SoM by AOs was by Torres et al., who assessed the relative energy values of a 
simplified tetrahedral intermediate structure for all potential SoM. The method was very successful (considering 
it did not take into account the protein structure) and had an accuracy of 93%. The drawback of the method was 
its slow execution time since it depended on the DFT method and the set of compounds for testing was relatively 
small – 27 compounds. [4] The results were later used by Jones et al. to predict clearance for drugs and drug 
candidates metabolized by AOs 36 and Xu et al., who built a decision tree model based on the stability of the 
intermediate structure and an additional steric descriptor [37]. Montefiori et al. expanded the work from using 
relative energy values from the tetrahedral intermediate to calculating the activation energy value (Ea) using a 
simplified MoCo. While the activation energy was excellent in identifying the site of metabolism, only six 
substrates were tested. They also tried various other proxy descriptors (e.g., stability of the product, ESP 
charges) for the Ea and found out that they were as good but considerably faster to calculate. [14] Montefiori et 
al. subsequently expanded the study to a more extensive dataset (78 compounds) and used various 
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aforementioned proxy descriptors to build classification models. The resulting models had receiver operating 
characteristic area under curve (ROC-AUC) values of up to 0.96 and kappa values of up to 0.89. [5] A notable 
experimental and computational study was performed by Lepri et al., who acquired or synthesized over 270 
compounds to study the oxidation of azaheterocycles and hydrolysis of amides by AOs. [12] The study yielded 
guidelines for recognising carbon atoms labile to AO metabolism and agreed with the work of Montefiori et al. 
[14] that the most positively charged carbon within an azaheterocycle is the potential site of metabolism. 

Cytochromes P450s 

Quantitively, the CYP enzymes are the most important family for the metabolism of xenobiotics. These enzymes 
contribute to the modification phase and are responsible for the metabolism of 75 to 90% of hepatically-cleared 
drugs in humans. [3, 38, 39] The catalytic action of CYPs is predominantly that of a monooxygenase (C-
hydroxylation, heteroatom oxygenation, dealkylation) but also includes epoxide formation and aromatic 
dehalogenation, among other reactions. [40] As with the previous enzyme, this work will concentrate on the 
most prevalent reactions, e.g. aliphatic- and aromatic hydroxylation, aldehyde oxidation, double bond 
epoxidation and N- and S-oxidation. [1] The catalytic cycle for these reactions is briefly described in the following 
paragraph, but for a comprehensive overview of the catalytic cycle and the various CYP reaction types, the 
reader is referred to the work by Isin et al., [40] Coon, [41] Manikandan et al. [42] and Jung [43]. 

The catalysis by CYPs requires the haem-iron centre as a cofactor and the reduced nicotinamide adenine 
dinucleotide phosphate (NADPH) as an electron donor. The rate-limiting reaction step for CYP is presented in 
Figure 2. The cycle, however, begins with the haem in its resting state; a water molecule occupies the axial 
position, and the iron is in a low spin ferric form. The first step involves the displacement of the axial water 
molecule and the association of the substrate molecule with the FeIII (I). [44] This association causes a geometry 
change, and the iron is displaced below the plane of the porphyrin, inducing a change in the spin of FeIII (low to 
high) and lowering the redox potential by around 100 mV. This change in redox potential facilitates a single 
electron transfer (SET) from a redox partner (NADPH) to produce a high-spin FeII species (II). [45, 46] This species 
binds molecular oxygen, which oxidises the iron back to the low-spin ferric form (III) and the iron returns to lie 
within the porphyrin plane. An additional SET yields the basic dioxo-dianion species (IV), which is doubly 
protonated, leading to the fission of the O-O bond and releasing a water molecule (V). The ferryl-oxo compound 
formed in this step is commonly known as “Compound I” and takes part in the rate-determining step. An oxygen 
atom is inserted into the R-H bond in step VI. Finally, the hydroxylated product is released, a water molecule 
returns to the ferric haem’s axial position, and the starting complex is regenerated (VII). [1] 

 
Fig. 2 The transition state for oxidation by CYP. 

The importance of CYPs in drug metabolism, coupled with a wealth of experimental data, means that predicting 
the CYP metabolism of compounds has been a priority for the pharmaceutical industry. The natural choice was 
to create models of human CYP metabolism, allowing compounds to be screened virtually for potential 
metabolic liabilities. Successful models predicting regioselectivity and isoform specificity of CYPs for human 
isoforms have achieved accuracies of approximately 90%. [1, 47] As discussed above, despite the success of 
current CYP models, tests are still conducted regularly using animal models, primarily for human safety. The aim 
is to produce all of the likely human metabolites of a test compound to identify any possible harmful effects in 
humans during later-stage trials. Test species are chosen to fulfil a list of criteria, including producing metabolites 
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likely to be seen in humans, being able to survive in a laboratory, and being practical to handle and administer 
the test compound. Thus, in the current work, we expand our previously-published models [1] to pre-clinical 
species such as rats, mice, and dogs. 

Flavin-containing Monooxygenases 

The discovery of FMOs could be credited to Ziegler et al., who in 1964 suggested that the oxidative N-
dealkylation catalysed in the mammalian liver homogenates is divided into partial reactions catalysed by 
separate enzymes instead of a mixed-function oxygenase. According to the study, the two reactions were 
oxidation of the nitrogen atom and the subsequent dealkylation. [48] In 1966, the same research group was able 
to isolate the enzyme FMO, which catalysed the oxidation of the nitrogen atom, proving their initial theory. [49] 
It is now known that FMOs are able to oxidise tertiary-, secondary- and primary alkyl- and aryl amines, hydrazines 
and imidazoles. [15] S-oxidation by FMOs was proposed in 1974 by Poulsen et al., [50] and today, the following 
sulfur-containing groups are known to be oxidised by FMOs: sulfides, thiols and disulfides, thiocarbamides and 
thioamides, mercaptopurines, and mercaptopyrimidine. [15] In addition, FMOs have been observed to oxidise 
a wide variety of atoms such as boron, [51] carbon (Bayer-Villiger oxidation), [52, 53] phosphorus, [54]  selenium 
[55] and iodine [54]. [15] Furthermore, additional reaction types observed within humans include N-
demethylation and desulfuration. [16] However, the prevalent FMO-mediated metabolites are N- and S-oxides; 
thus, this study concentrates on N- and S-oxidation by FMOs. 

FMOs belong to the flavoprotein family of enzymes and require a single FAD to catalyse N- and S-oxidation. The 
catalytic cycle begins with FMO generating a stable peroxyflavin intermediate [56]. This is performed in two 
steps: first, the FAD undergoes a two-electron reduction utilizing the NADPH, and then it reacts rapidly with 
molecular oxygen to form the peroxyflavin. It is thought that FMOs in cells are predominately in a state where 
the peroxyflavin is ready to react with a substrate, and the system has been compared to a “cocked gun”. [15] 
The oxidation works by transferring an oxygen atom from the peroxyflavin to the “soft-nucleophile” of the 
respective substrate, forming a hydroxyflavin and an oxidised substrate (Figure 3). [30] The final parts of the 
cycle of catalysis are the regeneration of FAD by releasing water and releasing nicotinamide adenine 
dinucleotide phosphate (NADP+). 

 

Fig. 3 The transition state for oxidation by FMO. 

FMOs are an ancient gene family and can be found in all phyla examined, including the group chordate, to which 
humans belong. [57] In humans, there are five functionally active FMO isoforms, FMO1–5 and many non-
functional pseudogenes (FMO6P–11P). FMOs are found in multiple tissues, but, as with AOs, they are mostly 
present in the liver, with FMO3 being the most highly expressed major contributor to the metabolism of 
xenobiotics. FMO1 is found in the foetal liver; however, this gene is switched off in the liver after birth, and its 
function is subsequently replaced by FMO3 as the child develops. FMO1 is still highly expressed in adult kidneys 
and is also found in the small intestine. FMO5 is mostly found in the liver but is also expressed in the stomach, 
pancreas, and small intestine. FMO2 and FMO4 are present in very low concentrations distributed across several 
organs. While more is known about FMO2 than FMO4, their contribution to metabolism is small, and in the case 
of FMO4, its contribution is negligible, and it can be disregarded. [16] 
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Historically, FMO metabolism, which contributes to the modification phase, has been underestimated, ignored, 
or attributed to CYPs due to the overlap of their substrate specificity. However, there are molecular entities that 
are predominantly or exclusively metabolised by FMOs. [58, 59, 60, 61, 62] Thus, disregarding FMO metabolism 
could lead to unexpected paths of metabolism or, worse, toxic metabolites – e.g. FMOs are known to produce 
sulfinic acids, and S-oxides and S,S-dioxides of thiocarbonyls [63, 64, 65, 66, 67, 15]. In general, however, 
metabolites produced by FMOs are considered safer than CYP-mediated metabolites. [16] Predicting 
metabolism by FMOs could help researchers design drug candidates directed either away from or towards FMO-
mediated metabolism to avoid toxic metabolites. 

The number of studies regarding FMO metabolism is growing slowly compared to AOs, CYPs or UGTs. [3] 
Computational studies focusing on the mechanism of N- and S-oxidation are very scarce, with only three 
published studies. There were two schools of thought as to how the substrate oxidation step proceeds. Ottolina 
et al. proposed an SN2 reaction; [68] however Bach et al. proposed that the reaction proceeds via radical 
intermediates. [69] The latest results in our previously published work supports the SN2 reaction mechanism. 
[30] Only one model for predicting SoM for FMOs has been published by Fu et al., who used descriptors derived 
from quantum mechanics (e.g. Fukui reactivity indices) and circular fingerprints to train a Support-vector 
Machine classification model. [6] 

Uridine 5’-diphospho-glucuronosyltransferases  

UGTs are considered the second most important enzymes for drug metabolism, after CYPs, and the most 
important enzymes of the conjugation phase. UGTs are estimated to participate in the metabolism of 15% of 
hepatically cleared drugs and approximately 40% of all conjugation reactions. [39, 3, 38, 17] The UGTs have been 
actively studied since the 1960s, and it is one of the most actively studied enzyme families related to the 
metabolism of xenobiotics, with the number of studies dwarfed only by CYPs, reflecting their contribution to 
xenobiotic metabolism. [3] UGTs work by transferring a glucuronic acid (GA) moiety to a suitable functional 
group in the substrate, a reaction known as glucuronidation. Conjugation with a GA makes the substrate more 
polar; thus, in most cases, either deactivating the substrate or making it easier for the body to eliminate it. The 
most prevalent potential sites of metabolism are nitrogen atoms of amines, amides and N-heterocycles (N-
glucuronidation) and oxygen atoms of phenols, carboxylic acids, and alcohols (O-glucuronidation). [70] C- and S-
glucuronides are known but are rare. [71, 72] The current study concentrates only on N- and O-glucuronidation. 

UGTs are a sub-class of enzymes called glycosyltransferases, which are responsible for catalysing the formation 
of glycosidic bonds to form glycosides. In general, the glycuronosyl reactions follow a mechanism where the 
sugar donor and the substrate are bound sequentially, followed by the sugar transfer, inverting the configuration 
at the anomeric centre. The product is then released, followed by the release of the nucleotide moiety. In the 
case of UGTs, the sugar donor is uridine diphosphate GA (UDP-GA). [73, 74] The generally accepted reaction for 
UGTs follows the SN2 mechanism, where the nitrogen or the oxygen atom attacks the anomeric carbon of the 
GA, forcing the UDP to leave. Two residues of the enzyme act as the acid and base forming a “catalytic dyad” 
and stabilise the reaction as depicted in Figure 4. [75, 76, 77, 78, 30] 

 

Fig. 4 The transition state for glucuronidation by UGTs. The residues taking part in the reaction are based on the 
homology model of UGT isoform 1A1. [77] 
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Most kingdoms in biology include species with UGTs. [79] There is a total of 31 UGT isoforms found in humans 
– 22 active isoforms and 9 pseudogenes. Based on the sequence similarity, the active isoforms are divided into 
four categories – UGT1, UGT2, UGT3 and UGT4. In theory, the large number of different isoforms give rise to 
broad substrate specificity, but in practice, the substrate specificity often overlaps between the isoforms. The 
isoforms can be found all over the body ranging from the liver to the nasal cavity. [80] This work concentrates 
on the first two families, especially isoforms 1A1, 1A4, 1A9 and 2B7, which are primarily expressed in liver and 
are responsible for the conjugation of the majority of xenobiotic UGT substrates. [79, 81, 82, 83] 

The first models, which explored the isoform-specific SoM prediction for UGTs were published in 2006. [7] Sorich 
et al. developed naïve Bayes classifiers, using experimental data from the literature, for eight isoforms – 1A1, 
1A3, 1A4, 1A6, 1A8, 1A9, 1A10 and 2B7. Several other models[ 8, 9, 10, 11] have emerged over the years, which 
have taken a different approach to predict site-specificity, discarding the isoform specificity and working with 
all known human UGT-catalysed reactions. Such an approach allows the inclusion of additional data points since 
their origins are not restricted to isoform-specific studies. The number of data points within the referenced 
papers varied from around 1400 to 3300 unique SoM. 

Modelling Drug Metabolism 

There are many available modelling methods for predicting metabolism, ranging from empirical methods such 
as statistical modelling or machine learning to mechanistic approaches like molecular mechanics (MM), 
molecular dynamics (MD) or even quantum mechanics (QM). [84] For a model to be used for in silico screening, 
it must be fast; thus, empirical models, which are fast and relatively easy to set up (if one has enough data), 
should be preferred. The downsides of such models are that often, there are not enough data to train the model, 
and even where there are sufficient data, the models are non-transferable and qualitative. In cases where data 
is sparse, researchers may look towards models built using mechanistic methods. Such models can be built on 
smaller data sets, are more transferable due to the model’s underlying physical principles and can be 
quantitative. The downside of such models is the execution time, which, even with modest methods, can be too 
long for practical use. 

A different manner of differentiating between computational techniques for predicting metabolism is to divide 
them into two distinct categories: ligand-based and structure-based models. In the former, structures and 
properties of known substrate or non-substrate compounds are modelled to develop structure−activity 
relationships. The second approach focuses on the structure of the metabolizing enzyme, its known reaction 
mechanisms, and its interactions with substrates. Structure-based methods include docking, [85] molecular 
dynamics simulations, [86, 87] and QM/MM methods. [88, 1] 

In this work, we have chosen the ligand-based method since the available evidence suggests that structure-
based methods, at present, have diminishing gains in accuracy and incur higher computational costs. 
Furthermore, we combine elements from the empirical modelling methods with elements from the mechanistic 
approaches to derive reactivity-accessibility models, which achieve a balance between computational cost and 
accuracy for modelling metabolism and have been used successfully by the authors of the current work [1] and 
others [89, 90]. The reactivity-accessibility approach divides the metabolism of a compound into two parts – 
reactivity, which describes the pure reactivity of the potential SoM and accessibility, which captures the 
accessibility of potential SoM to the catalytic centre within the active site of the protein. The reactivity of a site 
is accounted for by calculating the activation energy of the rate-determining step of the corresponding reaction. 
This is a physical property, calculated using fundamental and empirical physical constants, and as such can be 
applied to any molecule. Furthermore, these models use the whole substrate to account for long-range 
electronic effects, which can play an important role in determining the reactivity of sites within a molecule. This 
gives the model a good domain of applicability compared with a purely statistical model, for which the domain 
of applicability is limited by the compound structures used to train the model. Previous studies have shown the 
activation energy is an important descriptor of whether a potential SoM will be metabolised experimentally. [1] 
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The rationale being that rate of a reaction is related to the activation energy by the Arrhenius equation. [91] 
Since the reaction centre is conserved across all isoforms of an enzyme class, the activation energy calculation 
is not dependent on the isoform, and the activation energy depends only on the substrate. 

The accessibility of a SoM refers to how easily it may be approached by the enzyme’s reactive centre, which is 
affected by many factors. In this study, steric and orientation effects were considered – steric effects relate to 
features of the substrate itself that may hinder access to the SoM, while orientation effects capture effects of 
the binding site that may orient the substrate such that some sites are far from the reactive centre. The steric 
aspect considers hindrance due to the bulk (or rigid structure) of the substrate itself. The orientation of the 
substrate in the binding pocket is important – some SoM may be distant from the reactive centre in the bound 
conformation of the substrate – and is affected by functionalities of the substrate and the protein, e.g., hydrogen 
bonding, electrostatic interactions, and hydrophobicity. The effect of these factors on the rate of metabolism 
are accounted for with two-dimensional steric and orientation descriptors that provide information about key 
functional groups’ locations relative to the potential SoM. The binding sites differ between the enzyme families 
and their isoforms, so accessibility is affected by both the isoform and the substrate. These steric and orientation 
descriptors require no knowledge of the three-dimensional structure of the binding pocket (an advantage over 
a docking study) and can be quickly calculated. [1] A statistical model of accessibility from the two-dimensional 
(2D) steric and orientation descriptors is used to correct the activation energies used to represent the reactivity. 

For the reactivity-accessibility model, we assumed that the compound is bound to the active site since the 
experimental, site-specific data for metabolism includes molecules, which are observed to be metabolised. Site-
specific information for molecules known not to be metabolised was not considered because it is unclear why 
the molecule was not metabolised; a molecule may have a highly reactive site but would not be metabolised if 
it does not reach the binding site. Whether a compound is a substrate of a given isoform of an enzyme class can 
be addressed by a separate model. [92, 93] 

Experimental Data 

The data used herein were curated from sources that provide detailed information on the experimentally 
observed SoM. Since the models are meant to distinguish the experimentally observed SoM from all potential 
SoM, the molecules included in the dataset, in the majority of the cases, have two or more potential SoM, out 
of which at least one is experimentally observed to be metabolised. To summarise, the collected compounds 
were labelled according to which enzyme family and which isoform from that family is responsible for 
metabolising the molecule (note that some molecules are metabolised by multiple isoforms or enzyme classes). 
Each potential SoM on a molecule was labelled as either observed to be metabolised or not by the corresponding 
isoform. The exception was the data for CYP metabolism by pre-clinical species, since in most cases, the 
published data did not include isoform-specific data. In this case, species-specific SoM data was curated by 
aggregating the influence of several CYP isoforms. Furthermore, compared to the other enzymes, the number 
of secondary and tertiary SoM was substantial for CYP substrates; thus, the sites were labelled as 1st, 2nd, 3rd or 
“not observed” for primary, secondary, tertiary or not metabolised SoM, respectively. In this curation, the 
emphasis was on high-quality data, retaining only data generated with appropriate experimental conditions. The 
data for AO, FMO, and UGT models was gathered only from in vitro experiments, where it was explicitly stated 
which isoform was studied (e.g. an isoform expressed in a cell line or isoform-specific microsomes). The 
experiments run with unphysiological substrate concentrations were rejected, where the lowest accepted 
concentration was 100 µM or less. If there were conflicting reports of the metabolism of a substrate (e.g., a 
primary site of metabolism in one paper was not recognised as a site of metabolism in another paper) then the 
substrate was rejected. Each metabolite included had to have an experimental confirmation (e.g. using mass-
spectrometry or NMR studies); we did not include metabolites based only on expert opinions. If the site of 
metabolism was not explicitly confirmed (e.g. an aromatic ring was oxidated, but the researchers were not 
certain, which atom it was) then the substrate was rejected. The data for pre-clinical species followed the same 
rules with the exception of isoform-specificity since these models were general. The four datasets are 
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summarised in Table 1 and the following paragraphs describe the size and the content of the datasets for each 
isoform and enzyme family. The references from which the data were obtained are listed in the Supporting 
Information of this work. 

For AO1, as in previous studies, all aromatic carbons are considered potential SoM. [5] The current work also 
included aldehyde SoM, although there are only eight molecules in this data set with this functionality that met 
the criteria for inclusion. To summarise, the data set for AOs consists of 157 molecules and 865 potential sites, 
of which 160 are observed experimentally to be metabolised – 155 primary and 5 secondary sites. 

The FMO isoforms with sufficient data for building models are FMO1 and FMO3. The potential SoM include all 
nitrogen and sulfur atoms that could be oxidised according to the literature. Both the FMO1 and FMO3 data sets 
have a relatively small number of molecules (56 and 67 structures, respectively) and potential SoM (172 
potential SoM out of which 56 are metabolised by FMO1 and 209 potential SoM out of which FMO3 metabolised 
69), as can be seen in Table 1, compared to isoforms in other enzyme families. However, according to the 
literature, the smaller data sets should not hinder the model building process as FMO metabolism depends 
mainly on the reactivity of the sites. [15] 

The data set for UGT isoform UGT1A1 contains 98 molecules with 297 potential SoM, and it features 146 
potential SOM that are glucuronidated and 151 that are not. The majority of the potential SoM are phenols, 
followed by amines. The remaining SoM include carboxylic acids, alcohols and a small number of other SoM 
types, which include nitrogen atoms. The dataset for the UGT1A4 isoform is, overall, the smallest and contains 
only 54 molecules. However, it is the most balanced dataset in terms of the SoM types, with amines being the 
most prevalent, followed by phenols and other SoM, including carboxylic acids and other sites which include 
nitrogen atoms. The structure of the UGT1A9 data set is similar to UGT1A1, mostly comprising phenolic SoM, 
followed by amines and other types. While the UGT1A9 data set is the largest amongst UGTs (137 molecules), it 
features a large number of flavonoids; thus, the variation within the neighbourhood of the site types is similar 
to other data sets. The data set for UGT2B7 (90 molecules) is more balanced, with phenols still being the majority 
of the potential SoM, followed by amines, alcohols, carboxylic acids and other sites featuring a nitrogen atom 
as the potential SoM. 

For CYPs, three of the most common pre-clinical species and strains were selected: Sprague Dawley (rat), beagle 
(dog), and various strains of mouse. Initially, the aim was to obtain site-specific rates for individual isoforms; 
however, it was found that information regarding isoforms is not commonly reported in the literature for non-
human species and, as described above, all data for non-human species were aggregated by species and strain. 
Furthermore, such a wide variety of mouse strains were used in the literature that all of these strains were 
combined in this study to ensure the dataset is sufficiently large for model building. The number of substrates 
in the data sets for mice, rats, and dogs is 68, 163, and 80. The data set for mice includes 617 potential SoM, out 
of which 108 are metabolised. The data set for rats is the biggest, with 1428 potential SoM, out of which 305 
are metabolised. The data set for dogs features 1091 sites, out of which 154 are metabolised. Other species and 
strains that were considered but found to have comparatively fewer substrates with available data included: 
Wistar rats, Cynomolgus monkeys, New Zealand White rabbits and Göttingen minipigs. 

In most cases, the literature searches yielded papers, which reported the detected metabolites as primary (1st), 
secondary (2nd) or tertiary (3rd) metabolites. However, in some cases, the papers contained the ideal data (rate 
of metabolism, Vmax) for each potential site of metabolism in a molecule. Where this information was available, 
the experimentally observed rates were converted into a ranking within each molecule. The rates were ranked 
(i.e., 1st, 2nd, 3rd) within each molecule. 
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Table 1 The overview of data for building reactivity-accessibility models. 

Enzyme Isoform* No. of Substrates No. of Potential SoM No. of SoM Metabolised 
AO AO1 157 865 160 

FMO 
FMO1 56 172 56 
FMO3 67 209 69 

UGT 

UGT1A1 98 297 146 
UGT1A4 54 146 66 
UGT1A9 137 390 187 
UGT2B7 90 223 115 

CYP 
Mice 68 617 108 
Rats 163 1428 305 
Dogs 80 1091 154 

* For CYPs the species instead of isoforms are mentioned. 

Aim of the Study 

This study demonstrates the generalizability of the reactivity-accessibility approach by training isoform-specific 
SoM models for AO1, FMO1 and FMO3, and UGT1A1, UGT1A4, UGT1A9 and UGT2B7. Furthermore, we apply 
the same approach to train non-isoform specific CYP models for pre-clinical species, such as mice, rats, and dogs. 
The in silico models are useful for predicting the modification and conjugation phases in humans. Modelling the 
metabolism of pre-clinical species could aid in ensuring the pre-clinical trials produce the likely human 
metabolites, using the model as an indicator for selecting the best pre-clinical species. 

Results and Discussion 
In the following subsections, we provide a description of how to take the systematic errors for semi-empirical 
methods into account using correction factors for each enzyme family. We then describe how the corrected Ea 
values are combined with the steric and orientation descriptors and the results from the experimental studies 
to build models for predicting the SoM. The model results are provided with data set splits, confusion matrices 
and y-scrambled values. 

The GP Model for AO 

We obtained the simplified reaction mechanism for the oxidation of azaheterocycles by AO from the work of 
Montefiori et al. [14] We describe additional work on expanding the simplified mechanism to aldehydes in the 
Supporting Information of the current study. We confirmed a correlation between Ea values calculated with PM6 
and DFT for various SoM types to verify that PM6 is suitable for replacing DFT. To achieve that, the SoM were 
divided into seven environments for which correction factors were calculated, as described in detail in the 
Supporting Information. As can be seen from Figure 5, the initial squared correlation coefficient increases from 
0.92 to 0.97 and most of the errors fall under 10 kJ per mol. 
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Fig. 5 Correlation between DFT and semi-empirical Ea values. Red dots represent the Ea values, and the green 
points represent the corrected Ea values. The blue line is the identity line, and the black lines represent deviation 
of +10 and −10 kJ per mol from the identity line. 

Applying the respective correction factors to the Ea values of different SoM environments, obtained using PM6, 
makes them directly comparable to each other because they are referencing the DFT energy scale. Out of the 
159 cases, the corrected Ea alone was able to predict the experimentally observed primary SoM as the site with 
lowest Ea in 52% of cases. Since the AO substrates have, on average, over five potential SoM, the AUC provides 
a better indication of how well Ea alone describes the site-specificity of AOs. The average AUC for all molecules 
is 0.80, indicating that the Ea value is an important descriptor for predicting the SoM of AO metabolism, but we 
expect that supplementing this with the accessibility descriptors in order to take into account the steric and 
orientation effects will improve our ability to predict SoM. 

The kappa value for the test set for the Gaussian Processes (GP) AO model is 0.83. The Ea was amongst the most 
important descriptors; the most influential being the descriptor that recognises the site as being ortho to a σ-
bonded aromatic nitrogen atom (it is very common to azaheterocycles, which form the majority of the 
compounds in the data set). The balanced accuracy of prediction was 0.90 for the test sets. The confusion matrix 
for the test set is shown in Figure 6. The y-scrambled result had kappa value of 0.05, which is considerably lower 
than the results from the test set, confirming that the models do not depend on spurious correlations between 
the observed experimental results and the measured descriptors. 

 

Fig. 6 The confusion matrix of the test set of Gaussian Processes model for AO1. 
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The GP Models for FMOs 

We used the simplified reaction mechanism for calculating the Ea for N- and S-oxidation by FMOs described in 
our previous work. [30] The initial tests, using AM1, demonstrated the feasibility of the mechanism, but unlike 
the correlation between the two methods for AOs, the correlation between semi-empirical methods and DFT 
for FMOs is only 0.26. The correlation did not improve after introducing separate correction factors for N- and 
S-oxidation, nor did it improve by dividing the SoM environments into further sub-environments (see Supporting 
Information). The low correlation can be explained by a hydrogen bond, which briefly forms between the 
cofactor and the leaving group during the transition state. [30] The hydrogen bond is observed in transition 
states optimised by DFT; however, it often does not form during the geometry optimisation with the semi-
empirical method AM1. The bond is often missing because AM1 is not as good at estimating the energetics of 
hydrogen bonding as DFT; thus, the correlation between the two methods is weak. For more information see 
Supporting Information for FMOs. 

While the correlation between like-for-like sites was not sufficiently high, both AM1 and DFT correctly identified 
the experimentally observed site as that with the lowest calculated Ea when tested on a set of substrates in the 
data set. The corrected Ea alone was able to predict the experimentally observed primary SoM as the site with 
lowest Ea in 82% of cases for both FMO1 and FMO3. The AUC for both FMO1 and FMO3, for the whole data set, 
using AM1, was 0.91 and 0.92, respectively. Thus, the ranking of sites based on the Ea value calculated with AM1 
is reliable for the reactivity-accessibility models. The reactivity descriptor alone could predict the experimentally 
observed primary sites in most cases. 

The kappa results for reactivity-accessibility GP models for predicting the SoM for the FMO1 and FMO3 test sets 
are 0.88 and 0.94, respectively. The confusion matrices can be seen in Figure 7. The balanced accuracies of the 
final models are 0.94 and 0.98 for FMO1 and FMO3, respectively. As with AOs, the Ea and ΔEa were amongst the 
most important descriptors in both models. The y-scrambled results were 0.00 and 0.03 for FMO1 and FMO3, 
respectively, demonstrating that the excellent performance of the models is unlikely due to chance correlation. 

 

Fig. 7 The confusion matrices of the test sets of GP models for FMOs. 

The GP Models for UGTs 

As with FMOs, we used the simplified reaction mechanism for both N- and O-glucuronidation identified in our 
previous work. [30] The AM1 semi-empirical method used for predicting FMO metabolism was also used for 
UGTs; however, unlike FMOs, the correlation between AM1 and DFT was higher – 0.58 before the corrections 
and 0.97 after applying the corrections (Figure 8). Interestingly, the Ea values for O-glucuronidation were much 
closer to the DFT values than those for N-glucuronidation. Thus, the correction factors for O-glucuronidation 
were very small compared to those for N-glucuronidation. The description of SoM environments and the 
derivation of the correction factors for N- and O-glucuronidation can be found in the Supporting Information. 
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Fig. 8 The correlation between DFT (B3LYP/SVP) and semi-empirical method (AM1) for N- and O-glucuronidation. 
Red points represent the uncorrected values, and green points represent the corrected values. 

The AUC for the 1A1 isoform, using AM1, was 0.86. The GP model for 1A1 yielded a kappa value of 0.81 with 
balanced accuracy of 0.90 (the confusion matrix for the 1A1 model can be seen in Figure 9). The y-scrambled 
kappa result for 1A1 was 0.12, indicating that this result was unlikely to be due to random correlations with the 
data. 

The AUC for the 1A4 isoform, using AM1, was 0.72, the lowest out of all sets. Since 1A4 is specialised for the 
metabolism of tertiary nitrogen atoms it could be theorised that the accessibility descriptors play a bigger role 
compared to other UGT isoforms. The data set for building the GP model for 1A4 had the fewest data points 
amongst the chosen isoforms. The GP model had a kappa value of 0.68 and a balanced accuracy of 0.84 (the 
confusion matrix for the 1A4 model can be seen in Figure 9). As before, the y-scrambled results, with a kappa 
value of 0.02, proved that no random correlation exists in the data set. 

The AUC for the 1A9 isoform, using AM1, was 0.78. The data set for building the GP model for 1A9 had the 
largest number of data points. This large data set yielded a result with a kappa value of 0.63 and a balanced 
accuracy of 0.82 (the confusion matrix for the 1A9 model can be seen in Figure 9). The y-scrambled results had 
a kappa value of −0.21, confirming that the result is unlikely to be due to chance correlations in the data set. 

The AUC for the 2B7 isoform, using AM1, was 0.87. The Gaussian Processes model yielded a kappa value of 0.63 
with a balanced accuracy of 0.82 with the y-scrambled results of 0.21 (the confusion matrix for the 2B7 model 
can be seen in Figure 9). It is surprising that the kappa value of the GP model is relatively low while the AUC is 
the highest among UGT data sets. This can partly be explained by exploring the data set of 2B7; the number of 
compounds in this test set is 18 while the amount of SoM which get metabolised is 26. In few cases the model 
fails to recognise the secondary SoM, which in turn lowers the kappa value of the model considerably. 
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Fig. 9 The confusion matrices of test sets of GP models for UGTs. 

The WLS Models for CYPs 

For the CYP models a 10-fold cross-validation weighted least squares (WLS) model was built. The cross-validation 
strategy was chosen to ensure that the model results are not dependent on a single training and validation split 
of the data. For each of the 10 models, the training and validation compounds were selected randomly, and a 
WLS model was trained. 

Each trained model was applied to the test set.  For each compound in the test set the model output a prediction 
for each potential SoM as a floating-point number between 1 and 4 (where a 1 indicates a primary site and a 4 
indicates not metabolised). For a given site, we used consensus modelling, where the predictions from the 10 
models were averaged, and the resulting floating-point number was used as the final prediction. 

The outputs of the model were ordered (lowest to highest) for the sites within a given compound and the AUC 
under the ROC curve calculated for each compound. The average of these AUCs for the compounds in the test 
set for each species is shown in Table 2. for the two types of activation energy calculations. See the Supporting 
Information for the detailed performances of individual models making up the 10-fold cross-validation. 

Table 2 Average AUCs of compounds on the test set for three species or strains. 

Species (Strain) 
AUC 

(Standard Deviation) 

Rat (Sprague Dawley) 
0.89 

(0.021) 

Mouse (any) 
0.92 

(0.012) 

Beagle 
0.90 

(0.016) 
 

It is surprising that the accuracy of the pre-clinical general CYP models is comparable to the isoform-specific 
human AO, FMO, and UGT models. It is known that the pure reactivity for the potential SoM plays a critical role 
for CYP metabolism, but the highest accuracy is usually obtained by taking into account the isoform-specific 
steric and orientation effects. [1] While the experimental data for pre-clinical species did not specify individual 
isoforms, it is likely  that the general CYP pre-clinical species models achieved such excellent results because the 
experimental data mostly consists of a single or small number of prevalent isoforms, e.g. the CYP3A family. Thus, 
the steric and orientation component accounts for the aforementioned isoform(s). 

Conclusions 

This paper has described the prediction of the regioselectivity of metabolism by AOs, FMOs and UGTs for humans 
and CYPs for three pre-clinical species. The resulting models show excellent performance for the prediction of 
the primary SoM for isoforms of AOs, FMOs and UGTs for humans (Figure 10) and the prediction of primary, 
secondary, and tertiary SoM of enzyme families for mice, rats, and beagle dogs. While most of the models 
presented here cannot be directly compared to the already existing models due to their isoform-specific nature, 
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the overall accuracy of the presented models is comparable with the best metabolism prediction models 
published. Furthermore, to the best of the authors knowledge, the AO1 model is the only published model, 
which can predict both aldehyde- and aromatic (hetero) cycle oxidation, and the FMO1 and FMO3 models are 
the only isoform-specific FMO reactivity-accessibility models published to date. 

 

Fig. 10 The sensitivity, specificity, balanced accuracy and kappa values for human isoforms of AO, FMO, and UGT. 

The predictive models are based on a detailed understanding and simulations of the catalytic mechanisms of 
the respective enzyme families. The reactivity-accessibility approach used to build the ten models applies semi-
empirical methods to estimate the electronic activation energy of rate-limiting steps of the catalytic cycles. The 
simplified reaction mechanisms for the rate-limiting steps for the enzyme families have been validated 
previously using experimental data and DFT calculations. The activation energy was coupled with isoform-
specific steric and orientation effects, which arise due to the interactions between the substrate and the binding 
pocket. The methods based on quantum mechanics offer generality and transferability since they are derived 
from fundamental physical principles. Furthermore, these models use the whole substrate molecule and 
consider long-range interactions, which play an important role in differentiating between sites within a 
molecule. This gives the model a good field of applicability compared with a purely statistical model, whose field 
of applicability would be limited by the chemistry used to train the model. 

The seven models for human enzymes are isoform-specific and include the following isoforms: AO1 for AOs, 
FMO1 and FMO3 for FMOs and UGT1A1, UGT1A4, UGT1A9 and UGT2B7 for UGTs. The chosen isoforms 
represent the prevalent enzymes of their respective families in the human liver. The three models for pre-clinical 
species were for mice, rats, and dogs, but were not isoform-specific. 

The isoform-specificity of the models presented herein, sets them apart from previous studies and could be 
useful for researchers studying the metabolic fate of compounds through the modification and conjugation 
phases in humans. Furthermore, the models for pre-clinical species could help reduce, refine, and replace animal 
studies. 

Future work in this field will include combining the substrate data for multiple enzyme families into a single 
model to predict which enzyme family or families and isoform(s) are most likely to be responsible for metabolism 
of a compound. Isoform specificity models have already been published for CYPs, [92, 93] and a similar model 
could also be useful for UGTs. Combining predictions of the enzyme(s) and isoform(s) responsible for the 
metabolism of a compound with the SoM predictions of the models described herein would enable the 
metabolic fate of a compound based only on its chemical structure. The reactivity-accessibility method for 
modelling drug metabolism has proved to be generalisable, adding additional human enzymes from the 
conjugation phase. We believe a similar approach can be extended to additional enzyme families such as sulfo- 
and glutathione transferases. 
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Experimental Section 
Reactivity-accessibility Models 

As described in the introduction, the reactivity-accessibility models consider the reactivity and accessibility of 
each potential SoM of a substrate molecule. Reactivity describes the inherent lability of a potential SoM, while 
accessibility describes how easily the reactive centre can approach the potential SoM. [1] In this work, the 
reactivity is characterised using the Ea and the ΔEa of a simplified transition state. The ΔEa specifies the difference 
in Ea values between sites within a molecule. E.g. the ΔEa values for two potential sites in a molecule with the Ea 
values of 50 kJ mol–1 and 75 kJ mol–1 would be 0 kJ mol–1 and 25 kJ mol–1, respectively. The simplified reaction 
mechanisms for AOs, 14 CYPs, [1] FMOs, [30] and UGTs [30], with which the Ea values are calculated, have been 
previously published (with the exception of the oxidation of aldehydes, which can be found in the supporting 
information of the current work). However, the referenced work has used DFT to obtain the Ea values. In the 
current work, semi-empirical methods such as AM1 [94] and PM6 [95] are used to calculate Ea values. The semi-
empirical methods are used because they are significantly faster than ab initio methods and therefore can be 
applied to an entire substrate on a routine basis. 

The accessibility descriptors in this work are all based on the atom-pair descriptor concept, where distances 
from the potential SoM to specified functional groups are defined as counts of bonds. SMARTS patterns (SMILES 
arbitrary target specification, where SMILES stands for Simplified molecular-input line-entry system) are used to 
define the groups which describe functionalities such as acidic and basic groups, hydrogen bond donors and 
acceptors, and lipophilic groups that may interact with key residues in the active site of a protein. [1] The 
reactivity and accessibility descriptors for each SoM are then associated with the data from the experiments (is 
a SoM observed to be metabolised or not), which enables us to build quantitative structure-activity relationship 
(QSAR) models for each aforementioned isoform or species. 

Computational Methods 

All potential substrate structures in this work were generated from SMILES using OEChem from OpenEye. [96, 
97] Transition state structures were based on previous work by the authors and others. [1, 14, 30] The 
calculations for obtaining the Ea values for the reactivity-accessibility models were performed using the semi-
empirical methods AM1 [94] and PM6 [95] using the program package CP2K [98]. AM1 was chosen to calculate 
the Ea values because it had the best performance when testing it with our benchmark calculations (not 
published). It was, on average, the fastest and had the least amount of failed calculations. Furthermore, it has 
been successfully implemented in our previously published reactivity-accessibility models [1]. Since the 
simplified mechanism for AO includes a molybdenum atom, the PM6 semi-empirical method is used for AO 
models, which has the necessary parameters for this element. 

In many cases, the semi-empirical methods are subject to systematic errors due to the approximations they 
make to the Hamiltonian. Therefore, in order for the semi-empirical methods to be used confidently, corrections 
to account for these systematic errors are calculated by correlating the Ea values obtained with semi-empirical 
methods to the Ea values obtained with DFT. The potential SoM are divided into types based on the corrections 
they require (e.g. aliphatic and aromatic carbon atoms for CYP [1]) and the respective corrections are applied to 
the Ea values. The discovered SoM types can be recognised using SMARTS patterns and the application of 
corrections can be automated. 

DFT calculations, were run using the B3LYP or B3LYP-D functionals [99, 100, 101, 102, 103] and the def2-SVP 
[104] basis set. An effective core potential was used for the molybdenum atom, [105] which was obtained from 
the Basis Set Exchange. [106] B3LYP was chosen because the presented reaction mechanisms feature organic 
molecules and geometry optimisations, including transition states, followed by frequency calculations by hybrid 
GGA functionals yield similar results to the more expensive hybrid meta-GGA functionals. [107] The B3LYP-D 
was used to study AO and B3LYP without the dispersion corrections was used to study FMO and UGT (see 
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reference [30]). The geometry optimisations were followed by frequency calculations to verify the local minima 
or the transition states. The DFT calculations were performed with the NWChem 6.8 package [108]. 

Accessibility Descriptors 

While the three-dimensional compound geometries are used for Ea calculations, the accessibility descriptors 
calculated are based only on the 2D compound structure. This decision was made due to the limited nature of 
three-dimensional descriptors – using a single conformation would not be appropriate since a particular 
substrate may adopt multiple conformations in the active site, which would require an extensive conformational 
sampling or molecular dynamics calculation in situ to average over all low-energy conformations. It should be 
noted that the reactivity model is not as sensitive to conformational variation; the energy differences between 
conformations cancel out because the reactant and product calculations use the same overall conformation of 
the compound. Using 2D atom-pair descriptors avoids the problem caused by conformational variability and has 
proven itself on multiple occasions. [1] 

Machine Learning Methods 

The GP method in StarDrop was used to train the majority of models described herein. GP is a powerful 
computational method for predictive QSAR modelling. Using a Bayesian probabilistic approach, the method is 
widely used in the field of machine learning but is not common in QSAR and ADMET (absorption, distribution, 
metabolism, excretion, and toxicity) modelling. This method overcomes many of the problems of existing QSAR 
modelling techniques, e.g., it does not require subjective a priori determination of parameters such as variable 
importance or network architectures and it is suitable for modelling non-linear relationships. The method has 
built-in mechanisms to prevent over-training and does not require cross-validation. In addition, the importance 
of each descriptor is reported; thus, the impact of Ea and ΔEa can be directly measured. The details of the theory 
of Gaussian Processes for QSAR modelling are described in a comprehensive study by Obrezanova et al. [109]. 

The CYP models were trained using the WLS technique [110] because, unlike other enzymes, CYP substrates 
frequently have multiple SoM with different relative rates (primary, secondary, tertiary), a regression model 
provides greater resolution for ranking the predicted sites. WLS is a linear regression that minimises the residual 
sum of the squared deviations between model values and experimental data values. When fitting a line to the 
experimental data points, the weights allow each type of data point to be treated differently. The data point 
types that occur more frequently in the data (non-metabolised sites and primary sites) are given lower weight 
and less common types (secondary and tertiary points) are given a higher weight. The weighting ensures the line 
is not fit to maximise its score (residual sum of squares) at the expense of the less common site types by fitting 
the line very well to only the major site types. 

Data Splits 

For small data sets, the data obtained for each isoform was split into training and test sets using the approximate 
ratio of 80:20, respectively. For larger data sets, the data was split into training, validation and test sets using 
the approximate ratio of 70:15:15. The split was made by compound; thus, all potential SoM of one substrate 
were either in the training, validation or the test set. The compounds for the sets were chosen randomly, but 
the distribution of different sets was visually checked (without inspecting the individual structures) to ensure 
that the chemical space of the training set is roughly covered by the compounds in the validation and test sets 
(if compounds in either validation or test sets were found to be clustered in a specific region of chemical space, 
a new random split was performed). Since the models will not be based on molecules, but on the potential SoM 
within molecules the leave-cluster-out split method was not considered. The training sets are used to build the 
model, the validation sets of larger data sets are used to compare models built in different ways, and the test 
sets are used to evaluate the model chosen in the validation step. It was ensured that the test sets would only 
contain molecules with two or more potential SoM. The models, where the validation sets were missing, are 
evaluated right after building the model and the step of comparing models built in different ways is skipped. 
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The splits are illustrated using the chemical space plots, where each compound is represented by a point and 
the similarity between two compounds by their proximity. The plots have been assembled using the compound 
similarity fingerprint, constructed from the 2D path-based fingerprints, and the similarity is calculated using the 
Tanimoto similarity coefficient. The chemical spaces were created using a method called Visual Clustering in 
StarDrop, which uses an approach known as t-distributed Stochastic Neighbour Embedding – a nonlinear 
dimensionality reduction algorithm ideally suited to visualising high-dimensional data in two dimensions [111]. 
The plots include data for approximately 1300 launched drugs, which gives a rough measure of the coverage of 
the given data sets and enables to compare different data sets to each other. 

The chemical space of the substrates for AO1 can be seen in Figure 11. Since most of the substrates of AO1 are 
azaheterocycles, they tend to cover a narrow area (compared to other enzymes) on the given chemical space. 
There are exceptions, which are mostly aldehydes. 

 

Fig. 11 The chemical space plot representing the AO1 substrates. The light blue circles represent the 1300 
launched drugs, the dark blue circles represent the compounds in the training set, the black triangles represent 
the compounds in the validation set, and the red crosses represent the compounds in the test set. 

The following chemical space plots, in Figure 12, are for FMO1 and FMO3. Many substrates for both isoforms 
overlap; thus, the plots are very similar. Compared to AO1 chemical space, the data points for FMOs are more 
sparse, but the location of the points varies more. 

 

Fig. 12. The chemical space plots representing the FMO1 (left) and FMO3 (right) substrates. The light blue circles 
represent the 1300 launched drugs, the dark blue circles represent the compounds in the training set, and the 
red crosses represent the compounds in the test set. 
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The data for UGT1A1 and UGT1A9 have been grouped together in Figure 13 because the enzymes are known for 
metabolising phenolic compounds. While UGT1A1 is considered to be more varied regarding its substrates, then 
the data set of UGT1A9 features a number of very similar flavonoids, which can be seen on the plot of UGT1A9 
(both training and test set data points gathered together). 

 

Fig. 13 The chemical space plots representing the UGT1A1 (left) and UGT1A9 (right) substrates. The light blue 
circles represent the 1300 launched drugs, the dark blue circles represent the compounds in the training set, 
and the red crosses represent the compounds in the test set. 

Both the UGT1A4 and UGT2B7 (Figure 14) have fewer data points compared to the previous UGT isoforms. 
However, the isoforms are more geared towards N-glucuronidation and their substrates can be found from 
additional areas of the chemical space compared to the UGT1A1 and UGT1A9 isoforms. 

 

Fig. 14 The chemical space plots representing the UGT1A4 (left) and UGT2B7 (right) substrates. The light blue 
circles represent the 1300 launched drugs, the dark blue circles represent the compounds in the training set, 
and the red crosses represent the compounds in the test set. 

The data sets of CYP substrates for mice, rats and dogs are on Figure 15, Figure 16, and Figure 17, respectively. 
Since CYPs tend to metabolise a wide variety of compounds, then the datapoints are distributed more equally 
compared to the previous plots. 
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Fig. 15 The chemical space plots representing the substrates metabolised by mice. The light blue circles 
represent the 1300 launched drugs, the dark blue circles represent the compounds in the 10-fold cross-
validation set, and the red crosses represent the compounds in the test set. 

 

Fig. 16 The chemical space plots representing the substrates metabolised by rats. The light blue circles represent 
the 1300 launched drugs, the dark blue circles represent the compounds in the 10-fold cross-validation set, and 
the red crosses represent the compounds in the test set. 

 

Fig. 17 The chemical space plots representing the substrates metabolised by dogs. The light blue circles 
represent the 1300 launched drugs, the dark blue circles represent the compounds in the 10-fold cross-
validation set, and the red crosses represent the compounds in the test set. 
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Model Statistics 

The statistics which are used to report the inter-rater reliability of the Gaussian Processes classification models 
is Cohen’s kappa (kappa or κ). The kappa value is a more robust measure than the percentage agreement since 
it is robust to biases in the representation of classes in the data set and takes into account the possibility of the 
agreement occurring by chance. For convenience, we also report balanced accuracy. Furthermore, confusion 
matrices for each model are provided. The rules of how kappa values were evaluated are shown in Table 3. 

Table 3 Approximate ranges for evaluating kappa values. 

κ < 0.5 poor agreement 
0.5 ≤ κ < 0.6 moderate agreement 
0.6 ≤ κ < 0.8 good agreement 
0.8 ≤ κ < 1.0 very good agreement 

 

The output for the CYP model differs from the other enzymes, and is an ordered list of potential SoM within a 
given compound – primary site being the first in the list, which is followed by the secondary SoM etc. Hence, the 
ROC-AUC is calculated for each compound in the set to evaluate the accuracy of the rank ordering, as was done 
for the human CYP models in our previous work. [1] The AUC is also used when evaluating the importance of 
the Ea value alone for each enzyme before building the reactivity-accessibility models. A greater AUC indicates 
a higher performance; the maximum possible AUC is 1 for a perfect classifier, and a value of 0.5 is equivalent to 
the performance of random selection. 

Ideally, a validation set is used to fine-tune the model and the test set is used to make sure that the chosen 
model is predictive enough while not overtrained. However, as noted above, some data sets within this work 
are relatively limited in size and the validation set is missing. In such cases, the kappa value of the test set might 
be satisfactory, but to reduce the risk of overtraining, additional tests such as y-scrambling were used. Y-
scrambling is a simple test to explore the predictive power of a pure chance model. In y-scrambling, the values 
of the experimental data (the values to be predicted) are shuffled while the descriptor values were left intact. 
The scrambled data was then used to train a QSAR model. Cohen’s kappa value of an excellent model should be 
considerably higher than the kappa value obtained from y- scrambling, which, should be close to zero. Such tests 
are necessary because each data point has hundreds of descriptors which might correlate by chance. 
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