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Overview

e The challenges of drug discovery data
e Introduction to deep learning imputation

e Example applications

e Conclusions
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Challenges of Using Data in Drug Discovery

e |t'simpossible to measure all of my
compounds in all of my assays, how do |
make the most of the data | have?

e | know there is variability in my experiments,
how do | avoid being led astray by artefacts
and errors?

e \What are the most valuable experiments to run? What data will give me the most
information with which to make decisions?

e How can | use the limited data | have to make better predictions for new compound
designs, and choose the best ones for synthesis?
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Introduction to Deep Learning Imputation



Prediction vs. Imputation

e Prediction uses input ‘features’ to predict one or more property values for a
compound, e.g. QSAR models

e Imputation is the process of filling in the gaps in sparse experimental data using
the limited results that are already available
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Alchemite™ Deep Learning Imputation o
Optibrium’s exclusive partnership with Intellegens

e Learns directly from relationships between experimental endpoints as well as SAR

- Makes better use of sparse and noisy experimental data than conventional QSAR models

e ‘Fills in” the gaps in your data and makes predictions for ‘virtual’ compounds

— Generates more accurate predictions to target high-quality compounds

Descriptors Experiments Imputed Assays

Compounds
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Alchemite™ Deep Learning Imputation 0
Optibrium’s exclusive partnership with Intellegens

e Learns directly from relationships between experimental endpoints as well as SAR

- Makes better use of sparse and noisy experimental data than conventional QSAR models

e ‘Fills in” the gaps in your data and makes predictions for ‘virtual’ compounds

— Generates more accurate predictions to target high-quality compounds
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Alchemite™ Deep Learning Imputation 0
Optibrium’s exclusive partnership with Intellegens

e Estimates uncertainty in each individual prediction
— Strong correlation between uncertainty estimates and observed accuracy on independent test sets

— Highlights the most accurate predictions on which to base decisions

e Confidently targets high-quality compounds and prioritise experimental resources
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Example Applications



Applications of Deep Learning Imputation

\WERSIT)
& %

% -2 Genentech 4
/f*\
DUNr:EE %%Rﬁﬁg!!atl en A Member of the Roche Group AStrazeneca ?
Mapping accessible Quickly improve Efficient selectivity Predicting in
property space model quality profiling vivo PK

4

Lead Preclinical

Hit to Lead Optimisation development

Exploring novel Prospective Predicting secondary Predicting clinical safety
chemical space activity prediction activity assays from preclinical data
~m Caked | -
Takeda ONCOLOGY  Constellatizn
- PHARMACEUTICALS “
Non-pharma applications: m

Imputation of in vivo sensory properties
Prediction of agrochemical bioactivity profiles ;Mc

Watch our webinar at https://bit.ly//Al-solutions-webinar
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Alchemite Application to Project Data

e Application to heterogeneous data &
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across two projects Constellatizn
— Target and phenotypic activities and PHARMACEUTICALS
ADME endpoints W Best QSAR Method Alchemite

— 2453 compounds across 18 endpoints 09
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e Significant improvement in accuracy

Average R? &ZZ
Best QSAR 0.50 01 I I I I

. -0.1
Alchemite™ 0.72 |
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e Example of value delivered: os bV
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predicted inactives — could have saved “1° S 732§ § 3
24 FTE-months in unnecessary synthesis o 5 o £ =
Irwin et al. J. Chem. Inf Model. (2020) 60(6), pp. 2848—-2857
Watch our webinar: http://bit.ly/practical_deeplearning = o
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Collaboration with Open Source Malaria (OSM)

Combination with generative methods

Application to sparse antimalarial activity data
- Targeting novel MoA — PfATP4
- Alchemite generated one of the top-ranked models

e New compound ideas were generated using the
Nova™ module in StarDrop™

- Prioritised with Alchemite model
- Good activity profile and properties

e A confidently predicted compound was
synthesised and tested by OSM

- Only confirmed active of those proposed by four
organisations

e “[this] suggestion... was thought by the human
team to be a certain inactive... yet this compound
displayed good potency and is a particularly useful
outcome (i.e., the “Machine Overlords” class)”*

Watch our webinar http://bit.ly/ai antimalarials

*Tse et al. J. Med. Chem. (2021) 64(22) pp 1645-16463
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http://bit.ly/ai_antimalarials

Imputation of Sensory Properties

e Sensory properties are measured in
panels of human subjects

- Expensive and subjective

10

- Noisy data
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e Deep learning imputation is more

| —
accurate than QSAR methods - :
— Including multi-target deep neural 3
networks
- *  Alchemite Imputation
Alchemite Virtual
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— Small changes in structure that drive a large vp ws oo i 2 5 4
change in property

Mahmoud et al. J. Comput. Aided Mol. Des. (2021) 35(11) pp. 1125-1140
Watch our webinar https://bit.ly/SensoryWebinar
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https://bit.ly/SensoryWebinar

Focusing on the Most Confident Results
ODT Endpoint
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e Excellent correlation between model confidence (error bars) and observed accuracy

* The model can reliably identify the most accurate predictions

* |dentify experimental outliers for retest
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Imputation of Sensory Properties

e Sensory properties are measured in
panels of human subjects

- Expensive and subjective Predicted
Observed ODT Observed ODT by the Predicted ODT
- NOISy data Ne?;:::c:::no:':ie:::;et NZ:;::::::n Test Compound ODT of Test Alchemite by the best
Training Set Compound Imput:tilcn QSAR model
e Deep learning imputation is more - E\I
accurate than QSAR methods i re| “ 17
— Including multi-target deep neural
networks \/\/\&o 1.93 \(}0 0.12 -0.05 0.98
e Accurate prediction of activity cliffs that
are missed by QSAR methods 0 o
. . o 0.52 o 1.99 1.89 0.89
— Small changes in structure that drive a large d\ @
change in property

Mahmoud et al. J. Comput. Aided Mol. Des. (2021) 35(11) pp. 1125-1140
Watch our webinar: https://bit.ly/SensoryWebinar
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https://bit.ly/SensoryWebinar

Cerella

Enabling active learning in drug discovery CGrellO

an Augmented Chemistry» software product

e Automatically updates and prepares
experimental data for model building

- Connects seamlessly to data repositories

- Applies cleaning, business rules and transformations
to data for best model performance

e Automatically updates Alchemite models as
new data become available

1@ “StarDrop

- Always work with results based on the latest \__. -
information -
—~ Remove the burden of manually building and \\_'/'/ Other Platforms
dating models e
up O, W

e Manage ‘massive matrix’ of imputed results for .
easy access Data Sources Sparse matrix

- May contain 0(10%) data points! Ef‘l’fla mart

e Provide seamless access to results

— Using StarDrop™ or any platform via a Watch our webinar at http://bit.ly/cerella_active
RESTful API
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Conclusions
Reducing the time and cost of discovery cycles

Deep learning imputation gains more value than prediction from experimental data than
conventional compounds

e Proactively highlight high-quality compounds by more accurately ‘filling in” sparse data
(imputation)

e Increase confidence in decision making, identify hidden opportunities, flag outliers
and false negatives

e Translate Al insights into planning of experiments and focus on the most valuable measurements

e Gain more value from your compound data, accurately predicting complex endpoints, intractable
with conventional QSAR modelling

For more information: www.optibrium.com, matt@optibrium.com or booth #35
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Webinars

e Practical Applications of Deep Learning to Imputation of Drug Discovery Data
- http://bit.ly/practical _deeplearning

e Large Scale Imputation of Drug Discovery Data using Deep Learning
- http://bit.ly/largescale _imputation

e A Global Deep Learning Model for Global Health Drug Discovery
- http://bit.ly/deep learning global

e Al-guided Design of Antimalarials with In Vitro Validation
- http://bit.ly/ai_antimalarials

e Predicting Pharmacokinetic Parameters and Curves
- http://bit.ly/pk prediction az

e Optimising Kinase Profiling Programmes with Deep Learning
- https://bit.ly/deep learning kinase profiling

e |Imputation of Sensory Properties Using Deep Learning
- https://bit.ly/SensoryWebinar

Al Solutions from Hit to Candidate
- https://bit.ly//Al-solutions-webinar
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