

Guiding Anti-malarial Optimisation using Deep Learning Imputation and Compound Generation

ACS Fall National Meeting – August 24th, 2022

Benedict Irwin, Alexander Wade, Thomas Whitehead, Dr Matthew Segall

© 2022 Optibrium Ltd. Optibrium™, StarDrop™, Auto-Modeller™, Card View®, Glowing Molecule™, Augmented Chemistry™ and Cerella™ are trademarks of Optibrium Ltd. Card View® is registered only in the United States.

Overview

- Importance of antimalaria drug discovery
- Methods
 - Deep learning imputation
 - Med. chem. transformations for idea generation
- Application to anti-malaria optimisation collaboration with Open Source Malaria
 - Chemistry and data
 - Model building and validation
 - Idea generation
 - Results
- Conclusions

ACS Cent. Sci. 2016, 2, 687-701

Importance of Antimalaria Drug Discovery

- Infectious disease caused by *Plasmodium* parasites, mainly *P. falciparum* and *P. vivax*
- Transmitted through *Anopheles* mosquito
- ~212 million cases of malaria occurred worldwide in 2015, 429 000 mortalities^{*}
- Global target: 90% reduction in incidence and mortality by 2030 compared to 2015
- Drug treatment threatened by emergence of resistance to artemisinin-based combination therapy in South-East Asia
- Novel drugs needed for treatment and transmission-blocking

* World Health Organisation 2016 World Malaria Report

Introduction to Deep Learning Imputation

- Prediction uses input 'features' to predict one or more property values for a compound, e.g. QSAR models
- Imputation is the process of filling in the gaps in sparse experimental data using the limited results that are already available

- Learns directly from relationships between experimental endpoints as well as SAR
 - Makes better use of sparse and noisy experimental data than conventional QSAR models
- 'Fills in' the gaps in your data and makes predictions for 'virtual' compounds
 - Generates more accurate predictions to target high-quality compounds

- Learns directly from relationships between experimental endpoints as well as SAR
 - Makes better use of sparse and noisy experimental data than conventional QSAR models
- 'Fills in' the gaps in your data and makes predictions for 'virtual' compounds
 - Generates more accurate predictions to target high-quality compounds

Whitehead *et al.* J. Chem Inf. Model. (2019) **59**(3) pp. 1197-1204, Irwin *et al.* J. Chem. Inf Model. (2020) **60**(6), pp. 2848–2857

- Estimates uncertainty in each individual prediction
 - Strong correlation between uncertainty estimates and observed accuracy on independent test sets
 - Highlights the most accurate predictions on which to base decisions
- Confidently targets high-quality compounds and prioritise experimental resources

Introduction to Med. Chem. Transformations for Idea Generation

- Compounds must make sense from a medicinal chemistry perspective
- Apply 'transformation rules', derived from medicinal chemistry experience, to initial compound
 - Not only functional group replacement but also framework transformations
 - Library of >29,000 transformations Including BIOSTER[™] database
- Encode new rules to capture knowledge
 - Personal experience or in-house chemistries
 - Define groups of transformations tailored to specific objectives
- Apply iteratively to produce multiple 'generations'

M.D. Segall *et al.* J. Chem. Inf. Model. (2011) **51** pp. 2967–2976. K.D. Stewart *et. al.* Bioorg. Med. Chem. **14** (2006) p. 7011

© 2022 Optibrium Ltd. BIOSTER™ is a trademark of iKem Szolgáltató és Kereskedelmi BT

Expand Around a Compound or Chemical Series Potentially Exponential Growth

Application to Anti-Malarial Optimisation

- Data set of sparse antimalaria activity data
 - Different assays, different strains, different labs
- Competition run by OSM
 - Models from different organisations compared with blind test set
- Performed a stratified 80:20 split of the data into <u>training</u> and <u>validation</u>
- Descriptors
 - 330 sub-structural fragment and whole molecule properties
 - MW, logP, TPSA, V_x

н	1.00	J	К	L	М	N	0	P	Q	R	S	Т	U	V	W	Х
fal EC50 (Inh)	Pfal IC50 (GSK)	Pfal IC50 (Syngene) Pfal IC50 (Dundee)	Pfal IC50 (Avery)	Pfal (K1) I	Pfal IC50	Pfal IC50	(Pfal (K1) I	Pfal IC50	(Pfal (K1)	I Pfal (3D7)	Pfal (Dd2	Pfal EC50	Pfal EC50	Single Shot Inhibition %	Ion Regulation (ANU
10														10		
0.6095														0.6095		
1.121														1.121		
0.7308														0.7308		
1.668														1.668		
2.05														2.05		
									3.2	>5				3.2		
	0.276			0.034		0.52								0.276667		
	>5					0								0		
	>5			3.12		0								1.56		
	0.372			0.054		0.485								0.303667		
					0	0								0		
														#DIV/0!		
				11										11		
	>5					0								0		
	0.245			0.345	0.152	0.387								0.28225		
						0								0		
						0								0		
				0.001		0.005								0.003		
				0.015		0.009	0.161	0.176						0.09025		
			1.995											1.995		
			>10											#DIV/0!		
			1.05											1.05		
0.11														0.11		
0.124			0.074											0.099		
			0.189											0.189		
			>10											#DIV/0!		
	0.207													0.207	102	
0.04														0.04		
0.038			0.143								0.0493	0.0447		0.0905		
				0.404	0.375	0.61			0.581	0.641	L			0.5222		

Assav	Min Value	Max Value
pEC50 ChEMBL	4.5	8.2
pEC50 (Inh)	4.7	7.8
(3D7) pIC50 (Broad)	4.7	7.3
(Dd2) pIC50 (Broad)	4.7	7.4
(K1) pIC50 (Avery)	4.5	7.2
(K1) pIC50 (Guy)	5.0	6.9
pIC50 (Avery)	4.1	9.0
pIC50 (Dundee)	4.0	7.3
pIC50 (GSK)	5.0	7.6
pIC50 (Guy)	5.5	7.0
pIC50 (Ralph)	5.7	8.3
pIC50 (Syngene)	4.0	7.2
Single Shot Inhibition %	0%	100%
Ion Regulation Activity	0	1

Validation Results – Imputation Model

- Performance metrics
 - Coefficient of determination (R^2)

o Higher is better

Root mean square error (RMSE)

o Lower is better

• Performance on half of the endpoints is very good

Coefficient of Determination

Watch our webinar <u>http://bit.ly/ai_antimalarials</u> Tse *et al*. J. Med. Chem. (2021) **64**(22) pp 1645-16463

Training Validation

Increasing confidence in prediction

• Excellent correlation between model confidence (error bars) and observed accuracy

Watch our webinar <u>http://bit.ly/ai_antimalarials</u> Tse *et al*. J. Med. Chem. (2021) **64**(22) pp 1645-16463

Modelling Results – Comparison of Submissions on Blind Test Set

	Entrant (Affiliation)	Description of Model	Precision of Accurate Predictions (Active and Inactive)	Result	Progressed to compound idea generation	
	Jonathan Cardoso-Silva (KCL)		36%	Runner-up	80.000	
Private sector	Giovanni Cincilla (Molomics)	Logistic regression classifier model using a stochastic average gradient as solver, a uniform regularisation and a learning step size = 0.01.	91%	Winner (company)		
Private sector	Mykola Galushka (Auromind)		58%	Runner-up		
	Davy Guan (USyd)	Automated machine learning method to optimise QSAR models for the lowest Mean Absolute Error.	82%	Winner (non- company)		
Private sector	Ben Irwin/Mario Öeren/Tom Whitehead (Optibrium/Intellegens)	Deep imputation ^[Whitehead2019] with quantum mechanical StarDrop6.6 Automodeller and pKa descriptors ^[Hunt2020] .	81%	Second place		
	Raymond Lui (USyd)		58%	Runner-up		
	Slade Matthews (USyd)	Random forest model using 200 Mordred descriptors based on optimised 3D structures. Training RMSE = 0.805.		Runner-up		
	Ho-Leung Ng (KSU)	QSAR model based on detailed homology modeling of PfATP4 and docking. 3D features are combined with 1D/2D QSAR features using XGBoost (gradient boosted trees) to make a regression model.	71%	Runner-up		
Private sector	Vito Spadavecchio (Interlinked TX)		36%	Runner-up		
Private sector	Laksh Aithani/Willem van Hoorn (Exscientia)	Ridge regression model with alpha = 1. ECFP4 fingerprints with (Morgan radius 2) were the input to the model.	81%	Second place]	

Watch our webinar http://bit.ly/ai_antimalarials Tse et al. J. Med. Chem. (2021) 64(22) pp 1645-16463

Starting Point – Open Source Malaria 'Series 4'

Anyone free to employ OSM infrastructure to explore these, or other, series

www.opensourcemalaria.org, @O_S_M

optibrium

New Compound Generation - Results

- A confidently predicted compound was synthesised and tested by OSM
 - Only confirmed active of those proposed
- "The Optibrium/Intellegens suggestion... was thought by the human team to be a certain inactive ... yet this compound displayed good potency and is a particularly useful outcome (i.e., the "Machine Overlords" class)"

Watch our webinar <u>http://bit.ly/ai antimalarials</u> Tse *et al*. J. Med. Chem. (2021) **64**(22) pp 1645-16463

Conclusions

- We applied a combination of deep learning imputation and generative chemistry methods to explore optimisation strategies around an anti-malarial series
- By leveraging sparse data from multiple assays we built a model with good accuracy across several activity endpoints
 - The uncertainty estimates in each prediction correlated strongly with the observed accuracies
 - This enabled us to focus on novel compounds with the highest confidence in achieving activity
- The proposed compound was experimentally confirmed to be active and revealed a new optimisation approach for the chemical series
- For more information: <u>matt@optibrium.com</u>
 - Tse *et al*. J. Med. Chem. (2021) **64**(22) pp 1645-16463
 - Watch our webinar <u>http://bit.ly/ai_antimalarials</u>

optibrium

Acknolwedgements

- Prof. Matthew Todd, Dr Edwin Tse and the rest of the Open Source Malaria team
- Optibrium

- Benedict Irwin (now at MS Research)
- Mario Öeren
- Alexander Wade (University of Cambridge)

- Intellegens
- A
- Gareth Conduit
- Tom Whitehead
- Everyone from the other organisations participating in the blind validation

