

Predicting Reactivity to Drug Metabolism: Beyond CYPs 21st of August 2022

Mario Öeren, Peter A. Hunt, Matthew D. Segall

© 2022 Optibrium Ltd. Optibrium™, StarDrop™, Auto-Modeller™, Card View®, Glowing Molecule™, Augmented Chemistry™ and Cerella™ are trademarks of Optibrium Ltd. Card View® is registered only in the United States.

Enzymes

Aldehyde Oxidase (AOX)

- Enzyme class in the modification phase
- Reaction types:
 - Oxidation of aldehydes and aromatic (hetero)cycles
 - Oxidation of iminium ions and amide hydrolysis
- Isoforms
 - AOX1
- Rationale
 - Azaheterocycles are common in drug-like molecules
 - Reduced CYP metabolism
 - Unexpected high metabolic clearance

Flavin-containing Monooxygenases (FMO)

- Works in conjunction with Cytochrome P450s in the modification phase
- Reaction types:
 - N- and S-oxidation
 - Demethylation, desulfuration and Bayer-Villiger oxidation
- Isoforms
 - FMO1, FMO2, FMO3, FMO4 and FMO5
- Rationale
 - Overlapping substrates with P450s (*e.g.* avoid DDI)
 - Preventing P450 metabolites
 - Toxic metabolites such as S-oxides and S,S-dioxides of thiocarbonyl (sulfines and sulfenes)

Uridine Diphosphate Glucuronosyltransferase (UGT)

- Enzyme class in the conjugation phase
 - 40 per cent of known conjugation reactions
 - 15 per cent of drug metabolism reactions
- Reaction types:
 - N- and O-glucuronidation
 - C- and S-glucuronidation

- Isoforms
 - 1A1, 1A3, 1A4, 1A5, 1A6, 1A7, 1A8, 1A9, 1A10, 2A1, 2A2, 2A3, 2B4, 2B7, 2B10, 2B11, 2B15, 2B17, 2B28, 3A1, 3A2 and 8A1
- Rationale
 - The most important enzyme class in the conjugation phase

Empirical

Mechanistic

Pros

Can be built on smaller

high-quality data sets

Transferable – based

on physical principles

(Semi) quantitative

Cons

(Very) slow

Requires detailed understanding

ProsConsFastNeeds lots of dataEasy to set upNon-transferable

Qualitative

- Aim
 - Which atom interacts with the enzyme
 - The potential site of metabolism and the observed site of metabolism
- Reactivity
 - Calculate the Ea of the rate limiting step
 - Simplified protein, but full substrate
 - Independent of isoform
- Accessibility
 - Steric accessibility
 - Electrostatic interactions
 - Dependent on isoform and substrate

- Aim
 - Which atom interacts with the enzyme
 - The potential site of metabolism and the observed site of metabolism
- Reactivity
 - Calculate the E_a of the rate limiting step
 - Simplified protein, but full substrate
 - Independent of isoform
- Accessibility
 - Steric accessibility
 - Electrostatic interactions
 - Dependent on isoform and substrate

- Aim
 - Which atom interacts with the enzyme
 - The potential site of metabolism and the observed site of metabolism
- Reactivity
 - Calculate the E_a of the rate limiting step
 - Simplified protein, but full substrate
 - Independent of isoform
- Accessibility
 - Steric accessibility
 - Electrostatic interactions
 - Dependent on isoform and substrate

Simplifications for Reactivity

- Rate-limiting step
 - Oxidation
 - S_N2 reaction mechanism

- Rate-limiting Step
 - Oxidation
 - S_N2 reaction mechanism
- Simplifications
 - Discarded the protein
 - Full co-factor too large for practical calculations
 - "Tail" buried in groove and does not interact with substrate
 - Behaviour of simplified system at peroxide site analogous to full reaction centre

B3LYP/SVP

- Rate-limiting Step
 - Oxidation
 - S_N2 reaction mechanism
- Simplifications
 - Discarded the protein
 - Full co-factor too large for practical calculations
 - "Tail" buried in groove and does not interact with substrate
 - Behaviour of simplified system at peroxide site analogous to full reaction centre
- Reaction Mechanism
 - Interested in the activation energy of the reaction

B3LYP/SVP

The Simplified Mechanism for FMO

- Rate-limiting Step
 - Oxidation
 - S_N2 reaction mechanism
- Simplifications
 - Discarded the protein
 - Full co-factor too large for practical calculations
 - "Tail" buried in groove and does not interact with substrate
 - Behaviour of simplified system at peroxide site analogous to full reaction centre
- Reaction Mechanism
 - Interested in the activation energy of the reaction

Application to Various Substrates

Transition from DFT to AM1 for UGT

- AM1 is Faster
- Things to Consider
 - AM1 is bad at detecting weak interactions
 - AM1 makes systematic errors
- Fragment calculations
 - Aliphatic alcohols
 - Phenols
 - Carboxylic acids
 - Primary amines
 - Secondary amines
 - Tertiary amines

Transition from DFT to AM1 for UGT

- AM1 is Faster
- Things to Consider
 - AM1 is bad at detecting weak interactions
 - AM1 makes systematic errors
- Fragment calculations
 - Aliphatic alcohols
 - Phenols
 - Carboxylic acids
 - Primary amines
 - Secondary amines
 - Tertiary amines
- Corrections for each class
 - $R^2 = 0.95$

Training Models

- Isoform-specific site of metabolism models
 - Experimental data for seven isoforms
 - Only compounds which are metabolised
 - Compounds with two or more sites

Enzyme	Isoform	No. of Substrates	No. of Potential SoM	No. of SoM Metabolised
AOX	AOX1	157	865	160
FMO	FMO1	56	172	56
	FMO3	67	209	69
UGT	UGT1A1	98	297	146
	UGT1A4	54	146	66
	UGT1A9	137	390	187
	UGT2B7	90	223	115

- Isoform-specific site of metabolism models
 - Experimental data for seven isoforms
 - Only compounds which are metabolised
 - Compounds with two or more sites
- Descriptors
 - E_a
 - Site-specific (rooted) descriptors

An example: atom-pair descriptor describing contribution of aromaticity.

- Isoform-specific site of metabolism models
 - Experimental data for seven isoforms
 - Only compounds which are metabolised
 - Compounds with two or more sites
- Descriptors
 - E_a
 - Site-specific (rooted) descriptors
- Data Matrix
 - Training set, testing set
 - Split by molecule

Compound	Site	Experiment	E _a	Descriptor 1	 Descriptor N
Comp1	0	True	78.9	3.00	 5.16
Comp1	12	False	99.1	4.00	 6.97
Comp1	17	False	103.7	9.00	 3.25
Comp2	5	False	116.9	7.00	 2.13
Comp2	6	True	94.5	1.00	 1.87
Comp3	2	False	101.2	7.00	 8.10
Comp3	14	True	108.0	4.00	 2.33
Comp M	5	True	70.2	6.00	 7.27

- Isoform-specific site of metabolism models
 - Experimental data for seven isoforms
 - Only compounds which are metabolised
 - Compounds with two or more sites
- Descriptors
 - E_a
 - Site-specific (rooted) descriptors
- Data Matrix
 - Training set, testing set
 - Split by molecule
- Methods and Statistics
 - Gaussian Processes
 - Balanced accuracy and kappa value

к	Agreement		
к < 0.5	poor agreement		
0.5 ≤ κ < 0.6	moderate agreement		
0.6 ≤ κ < 0.8	good agreement		
0.8 ≤ κ < 1.0	very good agreement		

Site of Metabolism Model of FMO3

- Training set
 - 54 molecules, 173 sites
- Test set
 - 12 molecules, 35 sites
- E_a alone predicted 82% of the cases
 - AUC of 0.92

Summary of Metabolism Models

Conclusions

- Gathered Isoform-specific Data
 - Seven isoforms of AOX, FMO, and UGT
- Simplified Mechanism for Reactivity
 - AOXs, FMOs and UGTs
 - Using DFT and semi-empirical methods
- Trained Reactivity-accessibility Models
 - AOX1
 - FMO1 and FMO3
 - UGT1A1, UGT1A4, UGT1A9, UGT2B7

- Peter Walton
 - FMO
- David Ponting
 - UGT
- Peter Hunt
 - AOX, FMO, and UGT
- Matthew Segall
 - AOX, FMO, and UGT

