Sptibrium*“ m

Imputation of Sensory Properties Using Deep Learning
20t March 2022

Dmitriy Chekmarev (IFF) and Samar Mahmoud (Optibrium)

© 2022 Optibrium Ltd. Optibrium™, StarDrop™, Auto-Modeller™, Card View®, Glowing Molecule™, Augmented Chemistry™ and Cerella™ are trademarks of Optibrium Ltd. Card View?® is registered only in the United States.




Overview

e Introduction to sensory properties

— Data used in this project

e The Alchemite™ method for deep learning imputation
e Results

e Conclusions

Journal of Computer-Aided Molecular Design (2021) 35, pp 1125-1140
doi.org/10.1007/s10822-021-00424-3; https://bit.ly/Sensorylmputation

optibriurm

2 2022 Optibrium Ltd. Alchemite™ is a trademark of Intellegens Limited.




=N\

“optibriurm
—r0

Introduction to Sensory Properties and Data Set



Introduction to Sensory Properties (Olfactive properties)

e QOdor Intensity and Odor Detection Threshold are the key olfactive
properties which define the performance of fragrance ingredients
in various applications

Veramoss (IFF) CAS: 4707-47-5

Dose Response & Threshold
: ! MATERIAL_NAME

@ VERAMOSS

e (QOdor Intensity dose-response curve

— A series of evaluations of odor intensity performed at different
concentrations by a panel of trained testers

— Helps perfumers to create fragrance formulas
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e (QOdor Detection Threshold

— The lowest concentration that is detectable 50% of the time

— Helps to prioritize high-value ingredients

e Challenges of predicting sensory properties

— Noisy — subjective assessment by human subjects —

— Inherent variability among human subjects

— Expensive and time-consuming
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Introduction to IFF Project Objectives

e Alchemite deep learning can simultaneously predict several properties for multiple
compounds from very sparse data

1. Assess the ability of Alchemite to impute missing structure-property data, physical
chemistry and sensory, of fragrance molecules using molecular descriptors and
limited experimental data (Imputation model)

2. Understand the ability of Alchemite to predict physical chemistry and sensory
properties of fragrance molecules based ONLY on molecular descriptors (Virtual
model)

3. Compare with conventional QSAR machine learning models
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Introduction to Data Set

e 1094 molecules from IFF proprietary catalog with at least one measured property: vapor
pressure, water solubility, odor detection thresholds, dose-response odor intensities

e Varying degree of sparsity across properties
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Sparsity

o 15% 18% 56% 37% 37% 37% 37%
(% of missing data)

e Distribution of data set compounds across chemical classes and odor categories
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Introduction to Data Set (cont.)

e Training/Test Split: 931/163 molecules (85%/15 %)
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The Alchemite Method for Deep Learning Imputation
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Prediction vs. Imputation

e Prediction uses input ‘features’ to predict one or more property values for a
compound, e.g. QSAR models

e Imputation is the process of filling in the gaps in sparse experimental data using the
limited results that are already available
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Alchemite™ Deep Learning Imputation
Optibrium’s exclusive partnership with Intellegens 0

e Learns directly from relationships between experimental endpoints as well as SAR

— Makes better use of sparse and noisy experimental data than conventional QSAR models
e ‘Fills in” the gaps in your data and makes predictions for ‘virtual’ compounds

— Generates more accurate predictions to target high-quality compounds

Descriptors  Assays Imputed Assays
|

Compounds
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Alchemite™ Deep Learning Imputation
Optibrium’s exclusive partnership with Intellegens 0

e Learns directly from relationships between experimental endpoints as well as SAR

— Makes better use of sparse and noisy experimental data than conventional QSAR models

e ‘Fills in” the gaps in your data and makes predictions for ‘virtual’ compounds

— Generates more accurate predictions to target high-quality compounds
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Alchemite™ Deep Learning Imputation
Optibrium’s exclusive partnership with Intellegens 0

e Estimates uncertainty in each individual prediction

— Highlights the most accurate predictions on which to base decisions

e Confidently targets high-quality compounds and prioritise experimental resources

Mean
— prediction

Probability

Probability

Predicted pIC50 values Predicted value

Whitehead et al. J. Chem Inf. Model. (2019) 59(3) pp. 1197-1204, B. Irwin et al. J. Chem. Inf Model. (2020) 60(6), pp. 2848-2857 Opt|bp|um
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Project Results



Imputation vs Virtual Models

e Imputation: These models generate predictions for the test compounds using sparse
experimental data as input, in addition to molecular descriptors

— These models “fill in the gaps’ in the experimental data for compounds that have been synthesised
and tested in some assays

e Virtual: These models are built to expect only molecular descriptors as input

- These models make predictions based only on compound structure, i.e., for a compound that has
not yet been synthesised or tested
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Build/Test Process for Imputation Model
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Build/Test Process for Virtual Model
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Internal Validation Results

e C(Clear advantage for Alchemite
Imputation over all virtual models for =
sensory properties

* All models perform equivalently for

physicochemical properties (VP and
WS) S 7 e Achemite Imputation

Alchemite Virtual
* 4 QSAR models

* Virtual models perform similarly for S 7+ Cremprop (rapn

® Chemprop (descriptors)

sensory properties . . [ . . | |

VP WS oDT 11 12 13 14

R

- We observe a small advantage for the
Alchemite Virtual model

e ws ooT 11 2 3 14

Alchemite Imputation 0.85 0.75 0.60 0.79 0.90 0.92 0.8

Alchemite Virtual 0.83 0.75 0.36 0.29 0.49 0.57 0.54
Chemprop (graph) 0.86 0.71 0.26 0.34 0.45 0.51 0.51

Chemprop
(descriptors) 0.83 0.69 0.31 0.31 0.29 0.38 0.45

4 QSAR models
(average) 0.84+0.05 0.73+0.02 0.33+0.08 0.32+0.08 0.40+0.10 0.46%+0.10 0.50+0.06
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Independent Test Set Results

* The test set results are generally 2 -
consistent with internal validation .
— These confirm the substantial benefit
conferred by the use of Alchemite S
Imputation B |
* RZ?values for I1 are lower for all -
methods than the independent test set E L
. oy 2 4 ¢ 4QSARmodels
- Dug to greater variability betweep test i sl
subjects at the lowest concentration * Chemprop (descriptors)
. . . VP WS oDT 11 12 13 14
 There is a notable reduction in the
performance of Chemprop (graph)
. . . . _ VP WS oDT 11 12 13 14
relative to the internal validation Lo Lo oo T oo o
— The graph representations learned from SRR R [ [

™ 0.62 0.65 0.23 0.05 0.35 0.40 0.46
the training set may not capture the SAR of Chemprop

h d (descriptors) 0.83 0.71 0.34 0.19 0.40 0.37 0.53
4 QSAR |

the test compounds 0.80:0.07 0.70#0.02 0.29+0.04 0.2+0.03  0.32+0.08 0.52+0.02 0.53+0.02

“optibriur

i NS—=
18 © 2022 Optibrium Ltd.




ODT Prediction — Alchemite Imputation vs QSAR
Independent test set
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* Alchemite Imputation
¢ Best QSAR Model
| I | |
5 0 2 4
Observed ODT

Alchemite Imputation 0.56
Best QSAR Model 0.34

e Greater scatter in predictions for the best QSAR model than for Alchemite Imputation

illustrates the difference in R?
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Focussing on the Most Confident Results
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RMSE: Root-Mean-Square Error
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Focusing on the Most Confident Results
ODT Endpoint
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e Excellent correlation between model confidence (error bars) and observed accuracy

* The model can reliably identify the most accurate predictions
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Conclusions

e Sensory property data are noisy, due to inter-individual variability between test
subjects, and present a particular challenge for predictive modelling

e Alchemite Imputation offers a substantial advantage over conventional QSAR and
multi-target GCNN models

— Despite the sparsity of the experimental data, Alchemite can extract significant additional
information

— This also confers advantages for extrapolation in chemical space and detection of activity cliffs

e Alchemite uncertainty estimates can be used reliably to identify the most accurate
predictions

— Make decisions based on the most confident results

— Avoid missed opportunities caused by rejecting compounds based on inaccurate data

Download paper: https://bit.ly/Sensorylmputation, doi.org/10.1007/s10822-021-00424-3
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