

Accessible AI for Small Molecule Discovery Research

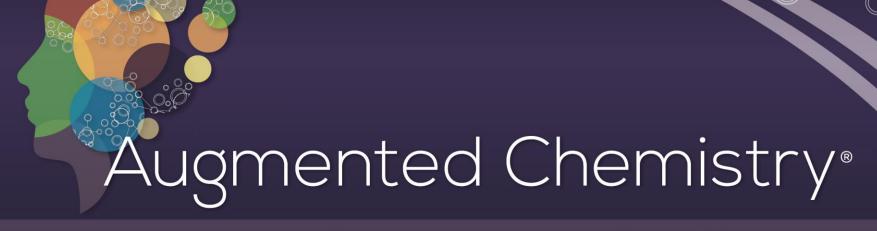
Considerations and Value Drivers

Tamsin Mansley*, Benedict Irwin, Peter Hunt, Samar Mahmoud, Bailey Montefiore and Matthew Segall

Agenda


- Very brief introduction to Optibrium
- Applying AI in drug discovery
 - Al for different organisation types
 - Introduction to Cerella™
- Case studies
 - Practical application to heterogeneous drug discovery project data
 - Large-scale application to global pharma data
 - Combination with generative methods
- Conclusions

Introduction to Optibrium


www.optibrium.com

- Optibrium creates elegant software solutions for small molecule design, optimisation and data analysis
 - R&D of novel technologies to guide decisions and improve efficiency in drug discovery
- Global customer base from top-ten pharma to small biotech and academia
 - >170 customers worldwide
 - Adoption in other chemistry fields, e.g. animal health, agrochemicals, etc.

... enhance your expertise with AI to make better decisions

Applying AI to Drug Discovery

Al for Different Types of Drug Discovery Organisation

Al's potential: Better decisions, faster progress, high-quality candidates

Large Pharma

- Extract maximum value from large, global, cross-project data sets
- Frequently dedicate big teams to data science and AI research
 - o Often struggle to get buy-in and adoption by users

Biotech

- Resource constraints limit the amount of data that can be generated
- Need a turnkey solution to leverage limited data effectively
 - o Caveat: Need *enough* data not a 'magic bullet'

Al for Different Types of Drug Discovery Organisation

Al's potential: Better decisions, faster progress, high-quality candidates

Academic groups and consortia

and we want to find them

- Heterogeneous data from multiple collaborations and public data sets
- Data is often highly variable it is difficult to get a consistent picture

Consistent themes

- Predicting intractable, hard-to-model endpoints, to make best use of valuable resources
 - o For example, PK properties, and expensive, downstream experimental endpoints
- We know we are missing opportunities because of missing, uncertain or inaccurate data

Al for Different Types of Drug Discovery Organisation

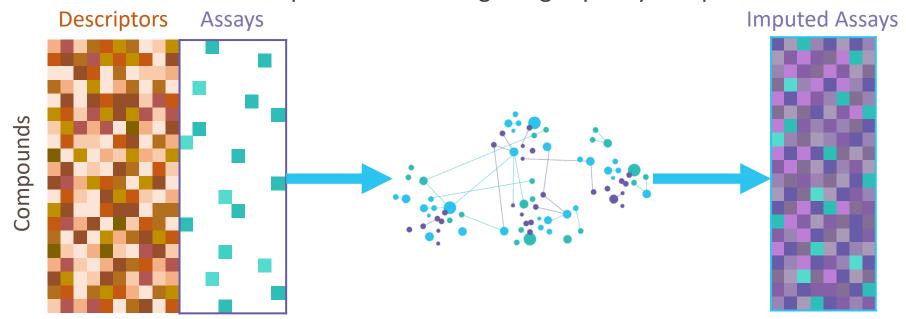
Al's potential: Better decisions, faster progress, high-quality candidates

VC or Investor carrying out Due Diligence

- Investments and acquisitions are \$ multi-million bets made with very little information
- More information about a project provides a better understanding about its chance of success
 - o Is the data consistent?
 - o Will it be possible to improve on the lead compound?
 - o Are there already some hidden gems?
- A rigorous, data-driven analysis can help to quantify the risk

Challenges of Using Data in Drug Discovery

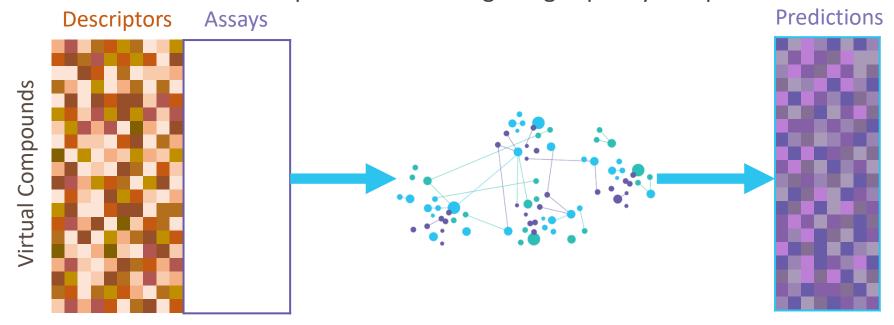
- It's impossible to measure all of my compounds in all of my assays, how do I make the most of the data I have?
- I know there is variability in my experiments, how do I avoid being led astray by artefacts and errors?



- What are the most valuable experiments to run? What data will give me the most information with which to make decisions?
- How can I use the limited data I have to make better predictions for new compound designs, and choose the best ones for synthesis?

Alchemite[™] Deep Learning Imputation Optibrium's exclusive partnership with Intellegens

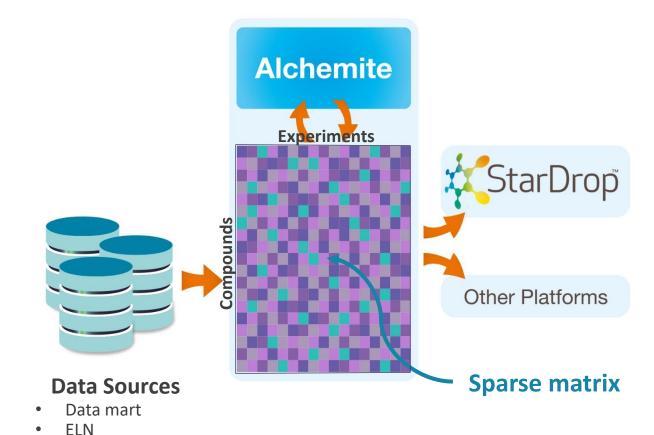
- Learns directly from relationships between experimental endpoints as well as SAR
 - Makes better use of sparse and noisy experimental data than conventional QSAR models
- 'Fills in' the gaps in your data and makes predictions for 'virtual' compounds
 - Generates more accurate predictions to target high-quality compounds



Whitehead et al. J. Chem Inf. Model. (2019) **59**(3) pp. 1197-1204, Irwin et al. J. Chem. Inf Model. (2020) **60**(6), pp. 2848–2857

Alchemite[™] Deep Learning Imputation Optibrium's exclusive partnership with Intellegens

- Learns directly from relationships between experimental endpoints as well as SAR
 - Makes better use of sparse and noisy experimental data than conventional QSAR models
- 'Fills in' the gaps in your data and makes predictions for 'virtual' compounds
 - Generates more accurate predictions to target high-quality compounds


Whitehead et al. J. Chem Inf. Model. (2019) **59**(3) pp. 1197-1204, Irwin et al. J. Chem. Inf Model. (2020) **60**(6), pp. 2848–2857

Cerella

Enabling active learning in drug discovery

- Automatically updates and prepares experimental data for model building
 - Connects seamlessly to data repositories
 - Applies cleaning, business rules and transformations to data for best model performance
- Automatically updates Alchemite models as new data become available
 - Always work with results based on the latest information
 - Remove the burden of manually building and updating models
- Manage 'massive matrix' of imputed results for easy access
 - May contain O(10¹⁰) data points!
- Provide seamless access to results
 - Using StarDrop™ or any platform via a RESTful API

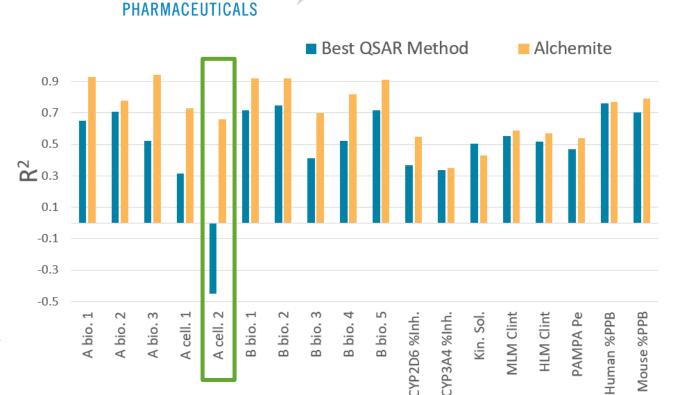
Watch our webinar at http://bit.ly/cerella_active

Deep Learning with Cerella Reducing the time and cost of discovery cycles

- Proactively highlight high-quality compounds by more accurately 'filling in' sparse data (imputation)
- Increase confidence in decision making, identify hidden opportunities, flag outliers and false negatives
- Translate Al insights into planning of experiments and focus on the most valuable measurements
- Gain more value from your compound data, accurately predicting complex endpoints, intractable with conventional QSAR modelling
- Add value even for individual project datasets, while scaling to global compound data repositories

Case Studies

Alchemite Application In Biotech


- Application to heterogeneous data across two projects
 - Target and phenotypic activities and ADME endpoints
 - 2453 compounds across 18 endpoints
- Significant improvement in accuracy

Average R²

Best QSAR 0.50

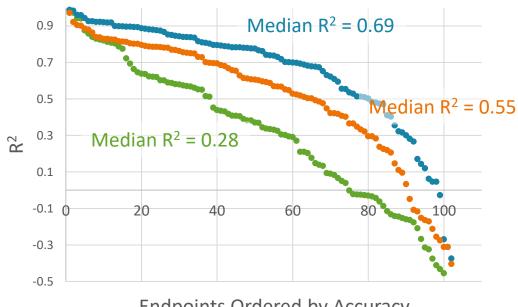
Alchemite[™] 0.72

- Example of value delivered:
 - Few false negatives among confidentlypredicted inactives – could have saved
 \$600,000 in unnecessary synthesis

Constellati@n

Irwin *et al.* J. Chem. Inf Model. (2020) **60**(6), pp. 2848–2857 Watch our webinar: http://bit.ly/practical_deeplearning

Alchemite Application in Big Pharma


Augmented Chemistry

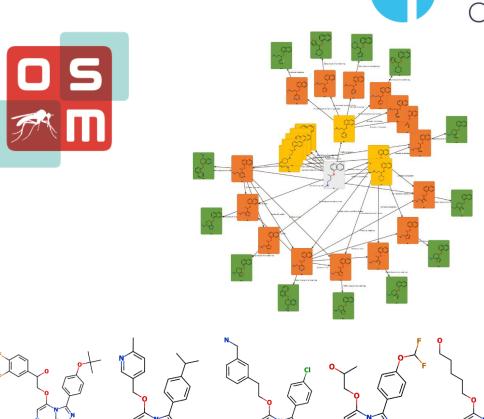
- Application to large data set
 - **678,994** compounds
 - 1,116 experimental endpoints
 - 2% complete
- Covering a **full range** of drug discovery assays, incl
- Example of value delivered:
 - "...an extension of what medicinal chemists... do in be possible for a person."

ONCOLOGY

Prospective Prediction of Project Target Activities

Endpoints Ordered by Accuracy

Random Forest
Alchemite Imputation
Alchemite Virtual


Irwin et al. App. Al Lett. (2021) DOI: 10.1002/ail2.31 Watch our webinar: http://bit.ly/largescale_imputation

Collaboration with Open Source Malaria (OSM) Combination with generative methods

Augmented Chemistry

- Application to sparse antimalarial activity data
 - Targeting novel MoA PfATP4
 - Alchemite generated one of the top-ranked models in the OSM competition
- New compound ideas were generated using the Nova[™] module in StarDrop[™]
 - Prioritised with Alchemite model
 - Good activity profile and properties
- A confidently predicted compound was synthesised and tested by OSM
 - Only confirmed active of those proposed by four organisations
- Example of value delivered:
 - "[The Optibrium compound] is something that I am... sure none of the humans involved in the SAR over the years would have bothered making..."

Irwin *et al.* Int. Pharm. Ind. (2020) **12**(2) pp. 28-31 Watch our webinar http://bit.ly/ai_antimalarials

Exscientia

11 μM

Molomics

>25 µM

Molomics

14 µM

Optibrium/

Intellegens

0.65 μΜ

Davy Guan

>25 µM

Conclusions

- Organisations of different types and sizes have the same goals
 - Make better use of valuable resources
 - Avoid missed opportunities
 - Make go/no-go decisions with confidence and quickly identify the next drug candidate
- They are looking at the same problems through different lenses
 - Too much data vs too little
 - Sparse, noisy, heterogeneous data
 - Budgetary/resource constraints
- Al approaches, like Cerella™, provide insights by using all the available data.
 - Enables confident decision-making by highlighting interesting data and patterns
 - Significantly reduces the time and cost of discovery cycles

Acknowledgements

- Partners at Intellegens Limited
 - Ben Pellegrini
 - Gareth Conduit
 - Tom Whitehead
- Colleagues at Optibrium
- 18+ customer organisations who have participated in projects leading to additional Case Studies
- Session organisers Marti Head and Kate Hardy

For more information visit: optibrium.com/cerella

