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Introduction
‘Imputation’ describes the process of filling in the gaps in a data set comprising multiple 
experimental endpoints, where values have not yet been measured, using the limited data that 
are already present. By taking these sparse data as inputs, imputation models can directly 
‘learn’ from correlations between experimental endpoints. This approach gains more value 
from the sparse and noisy data available in drug discovery than conventional quantitative 
structure – activity relationship (QSAR) methods that use only descriptor – endpoint 
correlations. We have previously demonstrated a method for data imputation using deep 
learning and compared it with other methods for both imputation and prediction using public 
domain data sets [1]. However, benchmarking data sets are not representative of the real data 
available in drug discovery organisations and ongoing projects. In this poster, we will describe 
some practical applications of the Alchemite™ method for deep learning imputation.

Methods
A novel deep neural network is trained using molecular descriptors and sparse experimental
data as inputs with which to impute the missing values [1].

Example 1: Discovery Project Data
Alchemite™ was applied to heterogeneous data for 2,453 compounds, including target and
phenotypic activities and ADME endpoints from two projects.

The performance of Alchemite™ was compared with four QSAR methods and achieved an
average coefficient of determination (R2) of 0.72 compared with 0.50 for the best QSAR
method for each endpoint.

Full details of this study, including analysis of the chemical space and uncertainty estimates
can be found in reference [2], or watch a webinar describing this project in detail at

Example 2: Global Pharma Data
Alchemite™ can also be applied to much larger data sets. In this example, a total of 678,994
compounds and 1,166 heterogenous endpoints were modelled, covering applications to
prediction of project target activities, high-throughput screening (HTS) data and ADME
assays. For full details of this project, you can view a webinar at

Example 3: Combined with Generative Methods
In this example, an Alchemite™ model was generated based on sparse anti-malarial data,
provided by the Open Source Malaria (OSM) project. The resulting model was used to
prioritise novel compound ideas generated with the Nova™ module in StarDrop™ [3]. A
compound confidently predicted to have a good activity profile and physicochemical
properties was synthesised and tested by OSM and experimentally confirmed to be active.

More details of this project are provided in reference [4], or you can watch a webinar at

Conclusion
We have outlined three practical examples of the application deep learning imputation to drug
discovery and demonstrated a substantial improvement over conventional predictive
modelling in a wide range of scenarios, including project optimisation based on small data
sets, modelling large pharma-scale data and guiding the design of new compounds based on
sparse, noisy data.

The ability to extract more information from the sparse, noisy data that are typical in drug
discovery, and robust estimates of the confidence in each prediction, enable better decision-
making to quickly target high-quality compounds and prioritise experimental effort.
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An ensemble of networks generates a
probability distribution for each individual
prediction, accounting for uncertainties in
both the experimental data and any
extrapolation of the training data. From
this, a confidence in each prediction can
be assessed.
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Here we compare the profile of model
accuracies on blind test sets across endpoints
for the three applications. Results are shown
from Alchemite Imputation and Alchemite
Virtual models. For the Virtual model, the
predictions are based only on chemical
structure, illustrating the performance on
compounds for which no experimental data
are available. The performance of random
forests models are shown for comparison.
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