Development of a Structure Generator to Explore Target Areas on Chemical Space

Kimito Funatsu Department of Chemical System Engineering, The University of Tokyo

This materials will be published on "Molecular Informatics"

Drug Development

- Conditions lead compounds are required to meet
 - Biological activity for specific target
 - Various properties

(ADME-Tox, synthetic accessibility, etc...)

On the first stage of drug development, various structures with high activity are required

Structure Generators and SAR

Structure generators that aim to generate highly active structures are proposed.^{[1][2]}

[1] B. Pirard, Expert Opin. Drug Discov., 6, 225, 2011Copyright: Funatsu Lab
2[2] H. Mauser, W. Guba, Curr. Opin. Drug Discov. Devel., 11, 365, 2008The University of Tokyo

Chemical Space

It is necessary to consider the distribution of the generated structures on the chemical space

Development of a structure generator for searching target areas in chemical space

Copyright: *Funatsu Lab*₄ *The University of Tokyo*

Visualization of chemical space

A system for structure generation on 2D maps, de novo Design Algorithm for Exploring Chemical Space DAECS

> **Copyright:** *Funatsu Lab*₅ *The University of Tokyo*

- ★ Seed structures
- Pooled structures

1 Input of initial seeds

②Generation of new structures

③Filtering and recording

④Probabilistic selection of new seeds

- ★ Seed structures
- Pooled structures

CH3

①Input of initial seeds

2 Generation of new structures

③Filtering and recording

④Probabilistic selection of new seeds

- ★ Seed structures
- Pooled structures

CH3

1 Input of initial seeds

2 Generation of new structures

③Filtering and recording

④Probabilistic selection of new seeds

- ★ Seed structures
- Pooled structures

Input of initial seeds
 Generation of new structures
 Filtering and recording

④Probabilistic selection of new seeds

- ★ Seed structures
- Pooled structures

①Input of initial seeds

2 Generation of new structures

③Filtering and recording

④Probabilistic selection of new seeds

- ★ Seed structures
- Pooled structures

1 Input of initial seeds

2 Generation of new structures

③Filtering and recording

④Probabilistic selection of new seeds

Case Study

 α 2A data : GVK^[1] database ligand-binding affinity for α_{2A} adrenergic receptor training data × 300, test data × 335

Descriptors : Fingerprints from PubChem^[2] (460 bit)

Ex.

- >= 4 H
- >= 2 saturated or aromatic nitrogen containing ring size 6
- C(-C)(-H)(=N)

Visualization : Generative Topographic Mapping(GTM)^[3]

[1] GVK Bio Databases, http://www.gvkbio.com/informatics.html

[2] PubChem, http://pubchem.ncbi.nlm.nih.gov/

[3] C. M. Bishop, Markus Svensen, *Neaural Computation*, **10**, 215, 1998.

Copyright: *Funatsu Lab*₇ *The University of Tokyo*

Visualization of Chemical Space

Predicted activity calculated with 3-nearest neighbors method

 $\begin{array}{l} \mathsf{RMSE}_{\mathsf{cv}} &= 0.45 \\ \mathsf{RMSE}_{\mathsf{pred}} &= 0.42 \end{array}$

Structure Generation

- Structure Generation:
- **1.DAECS**
- 2.Conventional method : selection of new seeds by predicted activity (SVR^[1])
- Initial seeds: 7 structures with > 8 activity values Cycles: 100 Ø Trial: 10 times

Structure Generation

• Distribution of generated structures

Copyright: Funatsu Lak

Diversity and Activity

- Distributions of similarity with seed structures and predicted activity
 - Similarity : tanimoto coefficient
 - Activity : 3-NN method

Example of Generated Structures

Conclusions

- A structure generator 'DAECS' was developed. DAECS aims to generate structures in target areas on visualized chemical space.
- In a case study with GVK data, visualization of the chemical space and structure generation were performed.
- Distribution, diversity and activity of generated structures were verified. It was showed that DAECS can generate diverse structures, which are distributed in the target area on visualized chemical space.

APPENDIX

Path

Calculation of Similarity

Fingerprints

Structure A Structure B 0101000100111101... 0011001011110100...

$$t = \frac{M_{11}}{M_{01} + M_{10} + M_{11}}$$

Number of bits that satisfy below

$$M_{01} : A \rightarrow 0, B \rightarrow 1$$

$$M_{10} : A \rightarrow 1, B \rightarrow 0$$

$$M_{11} : A \rightarrow 1, B \rightarrow 1$$

Probabilistic selection (roulette) based on a scoring function

$$SCORE(r,d) = \exp\left(-\frac{r^2}{{\sigma_r}^2}\right) \times \exp\left(-\frac{d^2}{{\sigma_d}^2}\right)$$

- *r*: Distance from target on the map
- *d* : Distance from the map
- σ_r : Hyper-parameter
- σ_d : Hyper-parameter

Example of Scoring function

Distribution of a Specified Descriptor

• 145 >= 1 saturated or aromatic nitrogen-containing ring size 5

