Overview

Knowledge based approaches driven by careful analysis

- Sequence and 3D structure based information
- Associated structure activity relationships
- Homology & other natural sequence variation

Improved research success

- Selectivity and specificity of compounds against targets
- Off-target candidate effects in the genome
- Antibody humanness, anti-antibody response

Ligand-Protein Interaction Sites: Ligplot+

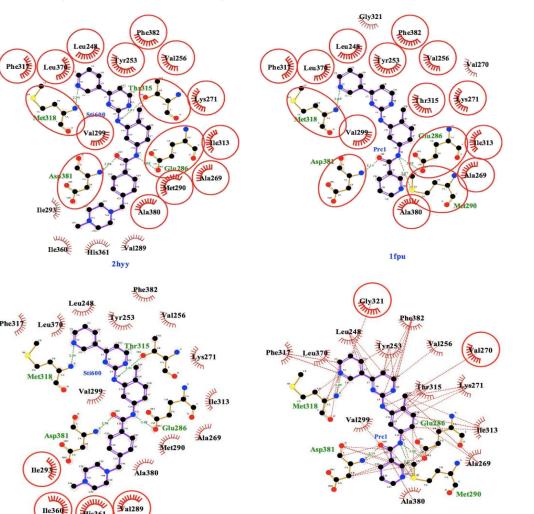
LigPlot+: Multiple Ligand-Protein Interaction Diagram ACS Publications for Drug Discovery

Roman A. Laskowski*† and Mark B. Swindells‡ European Bioinformatics Institute, Wellcome Trust Genome Campus, Ebisu Ltd. United Kingdom

CHEMICAL INFORMATION AND MODELING

J. Chem. Inf. Model. 2011, 51, 2778-2786

Enhancements over Ligplot include


- Allows multiple plots to be shown with binding sites oriented similarly
- User defined orientation
- Structurally conserved interactions automatically highlighted
- Distant homologue information can be applied
- Intuitive Java Interface

Ligplot+ Same protein different ligands

- c-abl bound to imatinib (PDB:2hyy) and compound PRC (PDB:1fpu)
- Tanimoto coefficient for ligands = 0.93

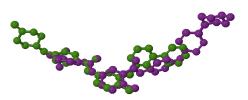
Ligplot automatically generates in same orientation.

Various display options

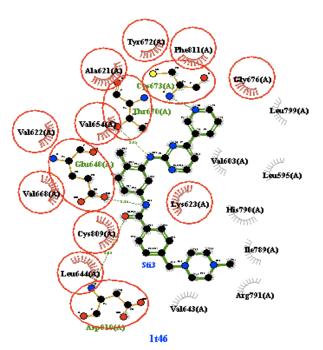
- Hydrogen Bonds shown in green
- Hydrophobic residues display as "eye lashes"

Top Diagram

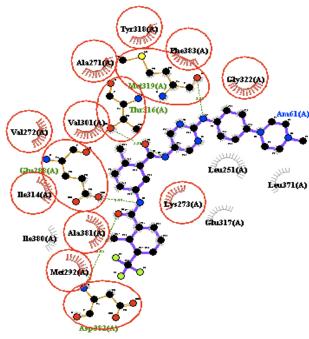
• **Conserved** interactions highlighted as circles.


Bottom Diagram

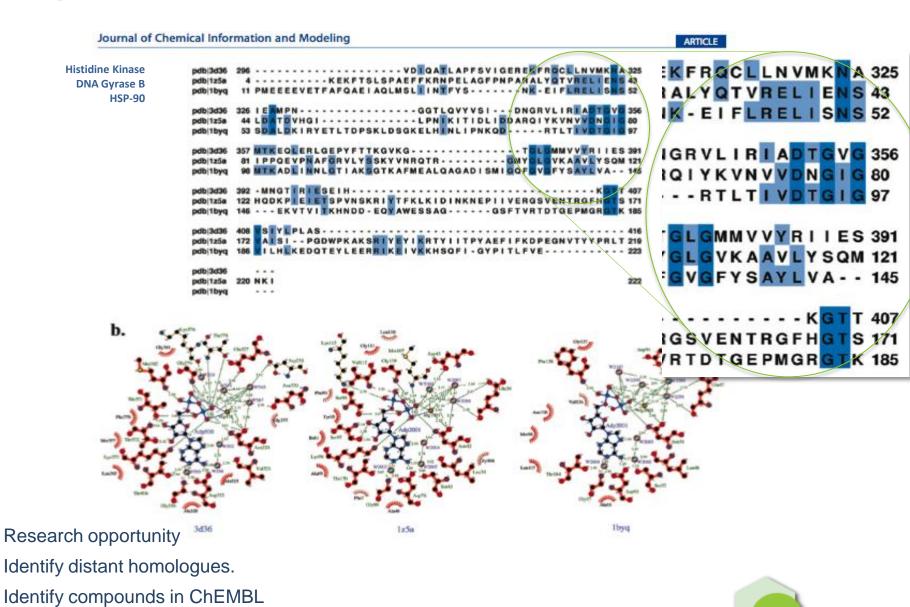
- **Unconserved** interactions highlighted
- Right-hand diagram also displays hydrophobic interactions as red lines



Ligplot+: Homologous proteins with different ligands

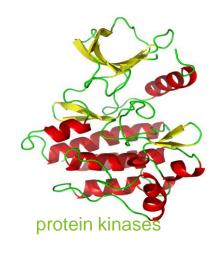

Ligplot conveys both ligand/protein similarity and 3D orientation.

Tanimoto coefficient = 0.85 Protein Sequence Identity = 37%


c-kit bound to imatinib (PDB:1t46)

lck bound to aminopyrimidine reverse amide (PDB:3byu)

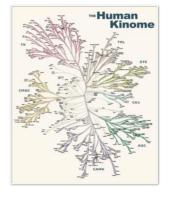
Ligplot+: Very Distant (<20% ID) Homologues

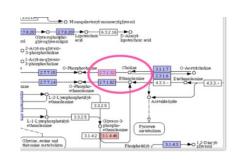

chemo

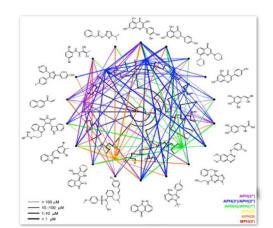
Screen existing compounds or preferred fragments against your new distant homologue.

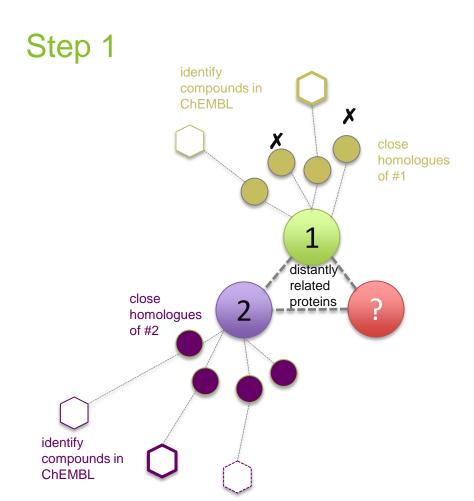
Exploring Distant Homologues

Protein Kinase Superfamily, other kinases, aminoglycoside phosphotransferase


c-abl, syk and c-kit (below) are therapeutically relevant protein kinases

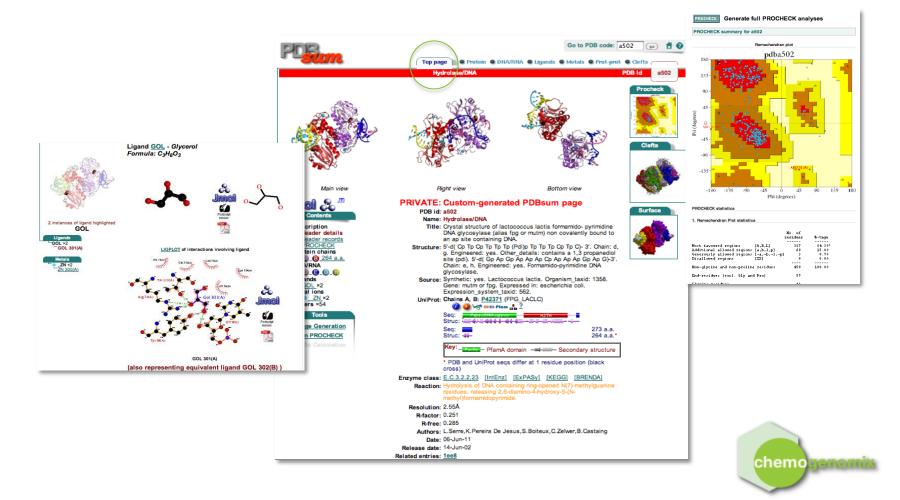





aminoglycoside phosphotransferase

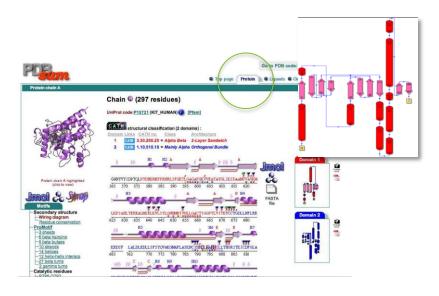
Knowledge-based screening

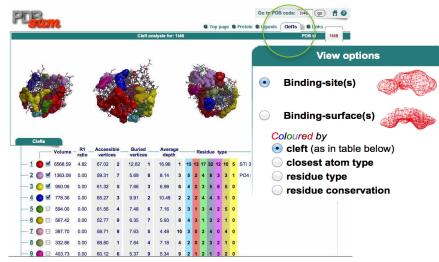
Step 2


 $h \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

or generate knowledge based preferred fragments

PDBsumProprietary for an in-house Electronic Lab Notebook

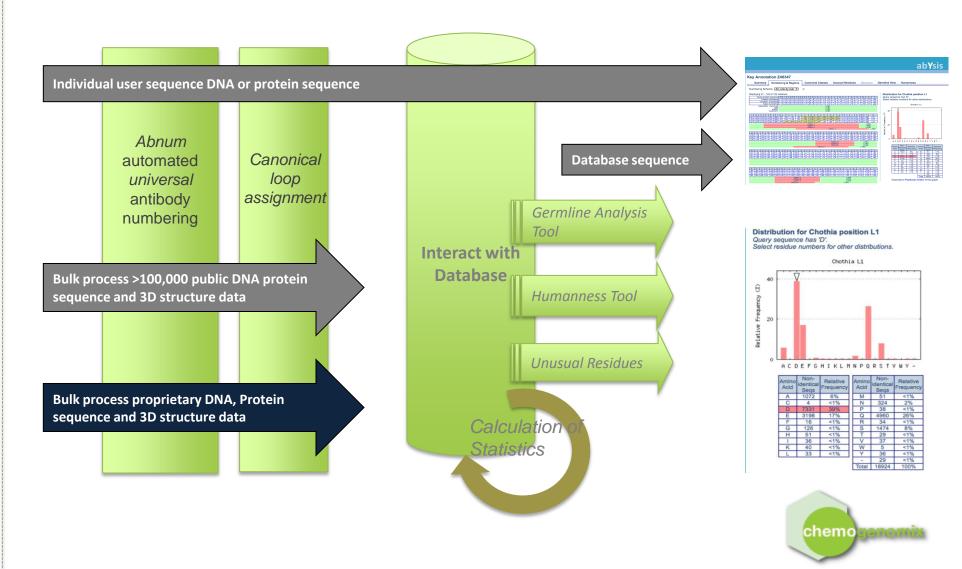

- Registration, Storage, Dissemination of *in-house* protein structure complexes
- Built upon multiple integrated algorithms.



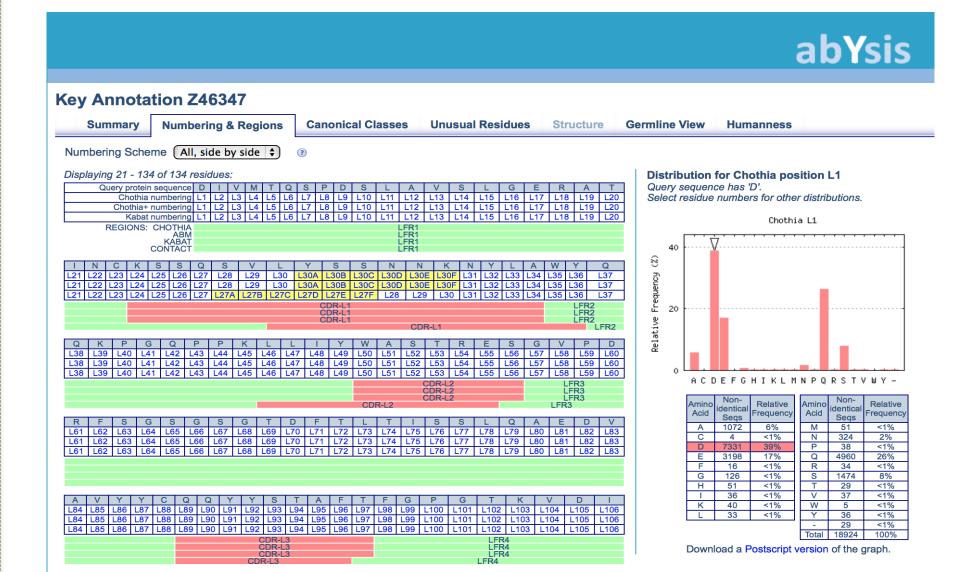
PDBsum*Proprietary*

After installing PDBsum*Proprietary* system at your site, load your proprietary PDB formatted structures, together with appropriate Uniprot reference code for each protein structure.

PDBsum will then automatically generate all necessary pages.



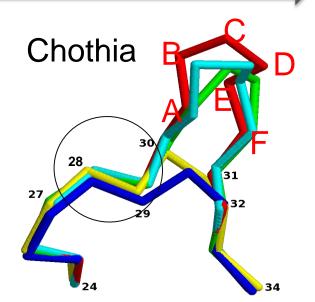
Cleft overview page generated using surfnet

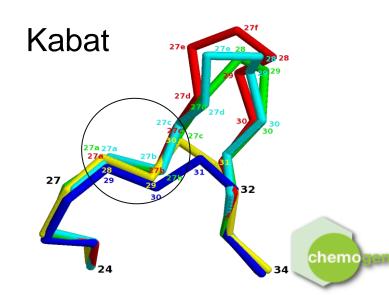


Antibody Drug Discovery

New Tools for Biotherapeutics

Comprehensive numbering, assignments & distributions

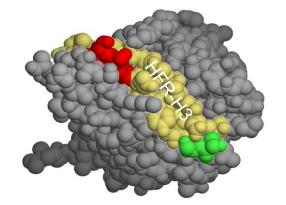

ebisu group


Numbering systems are important

Antigen binding regions vary in critical ways.

Numbering needs to take structural and functional variation into account

K	S	S	Q	S	V	L	Υ	S	S	N	N	K	N	Υ	L	A	17 Chathia
L24 L24	L25 L25	L26 L26	L27 L27	L28 L27A	L29 L27B	L30 L27C	L30A L27D	L30B L27E	L30C L27F	L30D L28	L30E L29 ←	L30F L30	L31 L31	L32 L32	L33 L33	L34 L34	Chothia Kabat
																_0 .	. 10.001
R	S	S	Q	S	L	V	Н	T/	N	G	N		Т	Υ	L	Н	16
L24	L25	L26	L27	L28	L29	L30	L30A	↓ 30B /	L30C	L30D	L30E		L31	L32	L33	L34	Chothia
L24	L25	L26	L27	L27A	L27B	L27C	L27D	L27E	L28	L29 <	L30		L31	L32	L33	L34	Kabat
Т	G	Т	S	S	V	V	G	G	Υ			M	N	Υ	V	S	14
L24	L25	L26	L27	L28	L29	L30	L30A	L30B	L30C				L31	L32	L33	L34	Chothia
L24	L25	L26	L27	L27A	L27B	L27C	L28	L29	L30	\rightarrow			L31	L32	L33	L34	Kabat

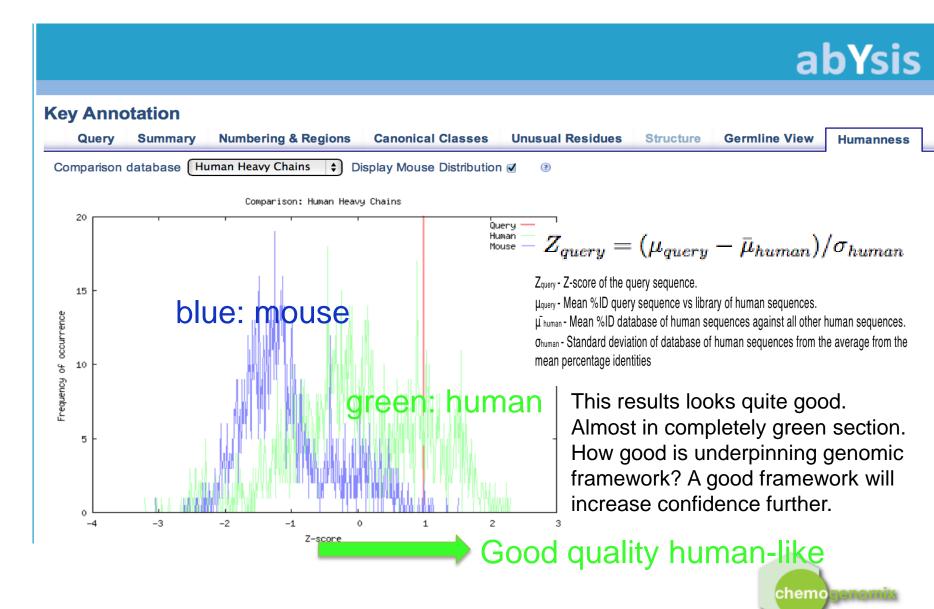


Frameworks can vary too

- H3 Framework insertions occur in many antibodies
- Our own "Chothia+" system also considers Framework

R	F	T	1	S	Α	D	T	S	K	N	T	Α	Y	L	Q	M	N	S	L	R		E
																		H82B				
H66	H67	H68	H69	H70	H71	H72	H72A	H72B	H72C	H73	H74	H75	H76	H77	H78	H79	H80	H81	H82	H83	H84	H85
H66	H67	H68	H69	H70	H71	H72	H73	H74	H75	H76	H77	H78	H79	H80	H81	H82	H82A	H82B	H82C	H83	H84	H85
HFR3																						

HFR-H3


With our approach framework insertions are also put in appropriate structural locations

H82A, H82B H82C X Chothia, Kabat

H72A, H72B H72C ✓ Martin (Chothia+)

1. Humanness of Herceptin

Germline Origin of herceptin

About

Home

Statistics Definitions

Database Searches

Basic

Structure

Sequence

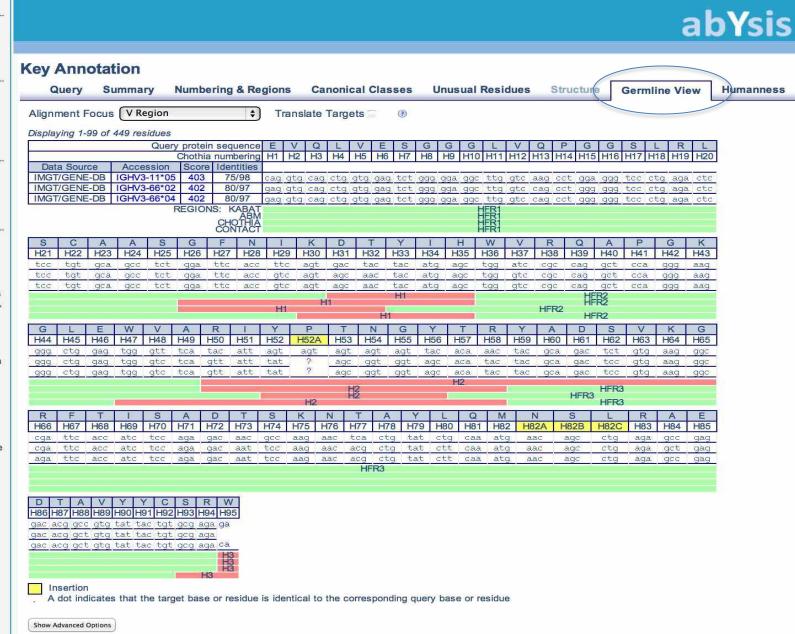
Distributions

Sequence Input

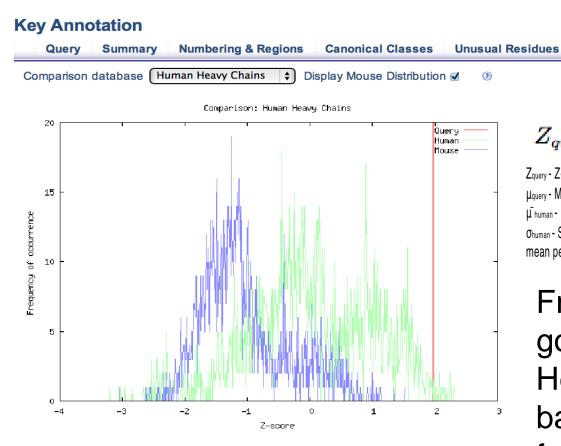
Key Annotation

Blast

DNA Alignment


Links

Antibody Pages


Commercial Use

Companies may use this public version of Abysis, but need to be aware that this is not a secure server. After trialing the system, companies wishing to install a local version of Abysis, which can also store and analyse proprietary sequence and 3D structure data should contact the distributor ebisu.

This public version of Abysis is made available largely through the generous support of commercial licensees.

Humanness of Herceptin genomic framework

$$Z_{query} = (\mu_{query} - \bar{\mu}_{human})/\sigma_{human}$$

Germline View

Humanness

Z_{query} - Z-score of the query sequence.

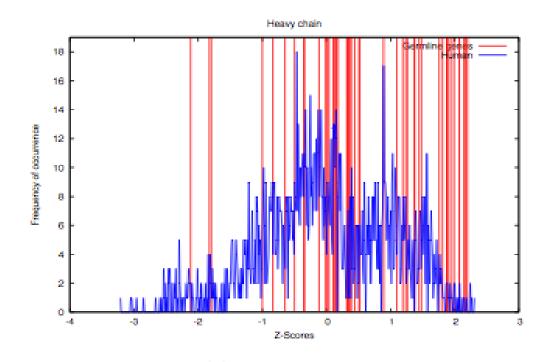
Structure

μquery - Mean %ID query sequence vs library of human sequences.

 $\mu^{\bar{}}$ human - Mean %ID database of human sequences against all other human sequences.

σ_{human} - Standard deviation of database of human sequences from the average from the mean percentage identities

Framework score is good. Better score than Herceptin. So Herceptin based on a good framework.



Variation in genomic frameworks

Investigative work has been implemented in Abysis to reflect how similar an antibody is to the mature human repertoire.

Blue: Mean % ID of each human antibody to all others in the set as Z score.

Red: Human VH germline antibodies

$$Z_{query} = (\mu_{query} - \bar{\mu}_{human})/\sigma_{human}$$

Z_{query} - Z-score of the query sequence.

μquery - Mean %ID query sequence vs library of human sequences.

 $\mu^{\bar{}}$ human - Mean %ID database of human sequences against all other human sequences.

 σ_{human} - Standard deviation of database of human sequences from the average from the mean percentage identities

2. Clinical antibody hu3S193

Targets LewisY antigen in epithelial cancers Anti-antibody response

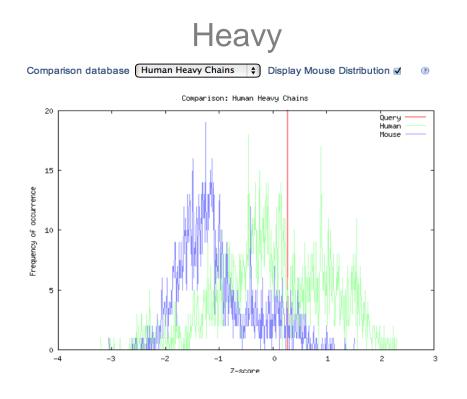
JOURNAL O	F				Search for:	
CLINICAL ONCOLOGY					Limit by:	All Topics
Official Journal of	f the American Society o	f Clinical Oncology				Browse by Topi
Home	Search/Browse	Subscriptions	PDA Services	My JCO	Customer Service	

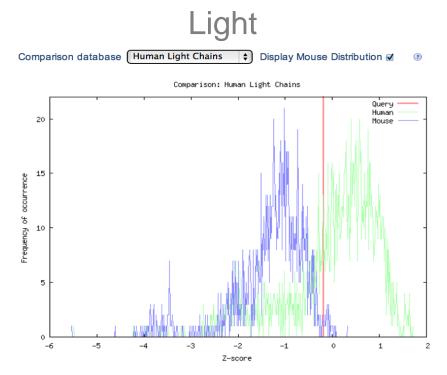
Journal of Clinical Oncology, 2004 ASCO Annual Meeting Proceedings (Post-Meeting Edition). Vol 22, No 14S (July 15 Supplement), 2004: 2567
© 2004 American Society of Clinical Oncology

Abstract

Phase I trial of hu3S193 in patients with advanced epithelial cancers which express the Lewis-y antigen

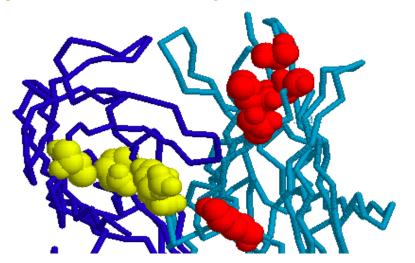
A. M. Scott, N. Tebbutt, F.-T. Lee, T. Cavicchiolo, Z. Liu, A. Poon, M. W. Brechbiel, E. Stockert, E. W. Hoffman and L. J. Old


Ludwig Institute for Cancer Research, Heidelberg, Victoria, Australia; National Institutes of Health, Bethesda, MD; Ludwig Institute for Cancer Research, New York, NY


2567

Background: The Lewis-y (Le^y) antigen is a blood group related antigen that is expressed in a high proportion of epithelial cancers. We have generated a humanised antibody (hu3S193) against Le^y, which has potent immune effector function, and efficacy in murine tumour models (Scott et al, Cancer Res 60: 3254–3261, 2000). **Methods:** An open label dose escalation Phase I trial of hu3S193 in patients (pts) with advanced Le^y positive epithelial cancers has been conducted. Inclusion criteria included +ve Le^y expression in tumour assessed prior to study entry. Pts received 4 infusions of hu3S193 at weekly intervals, with four dose levels (5, 10, 20 and 40 mg/m²). The first infusion of hu3S193 was trace labelled with ¹¹¹In to evaluate targeting. Biodistribution, pharmacokinetics, and immune response were evaluated in all patients. **Results:** A total of 12 pts (6M:6F; age range 42–76 yrs; 5 breast, 7 colorectal cancer) have been accrued into the study, completing the 5 (3 pts), 10 (6 pts) and 20 (3 pts) mg/m² dose levels. No infusion related AEs were observed. There was one episode of

Humanness scores for hu3S193 Heavy and Light Chains significantly worse than Herceptin


3. Humira (adalimumab)

How 'perfect' is it?

3-year follow-up study* in RA patients indicates higher anti-antibody response.

- Up to 28% developing anti-antibodies
- Presence of antibodies linked to failure of treatment and higher RA score
- Only 4% of those with anti-adalimumab antibodies had sustained remission
- 34% of antibody negative set has sustained remission

Analysis of Humira sequence identifies unusual residues

Residues cluster in 3D

30:L, 90:L, 93:L, 94:L Yellow

30:H, 52:H, 53:H, 56:H, 64:H Red

