

Multi-parameter Optimisation in Drug Discovery: Quickly targeting compounds with a good balance of properties

Dr Matthew Segall ELRIG Drug Discovery 2011, 7th September 2011

> © 2011 Optibrium Ltd. .Optibrium™, StarDrop™, Auto-Modeller™ and Glowing Molecule™ are trademarks of Optibrium Ltd

Overview

- Introduction: Balancing Properties in Drug Discovery
 - The challenges of multi-parameter optimisation (MPO)
 - Requirements for MPO in drug discovery
- Approaches for Multi-Parameter Optimisation
 - Rules-of-thumb
 - Filtering
 - Calculated metrics
 - Pareto optimisation
 - Desirability functions
 - Probabilistic scoring
- Balancing quality and diversity
- Case study
- Conclusion

The Objectives of Drug Discovery Multi-parameter optimisation

Identify chemistries with an optimal balance of properties

- Quickly identify situations when such a balance is not possible
 - -Fail fast, fail cheap
 - -Only when confident

Challenge 1: Complexity of Data

💿 StarDrop - [AffinityData]										
File Edit Windows Tools Help										
8			_						_	
Models Scoring Design P450 Data Analysis Ch 4 >		Smiles	ID	Affinity (pKi)	logS	logS @ pH7.4		logD	📕 2C9 pKi	hERG pIC50
Available Models	1	X00-	Compound-52	6.971	-0.287	-0.287	5.72	5.72	6.97	6.51
	2	× *	Compound-133	3.749	3.76	2.27	0.71	-1.43	3.75	4.57
▷ □ □ logP ▷ □ □ logD	3	42 ₆₄₉ 4	Compound-13	6.918	0.0409	0.0409	4.81	4.81	6.92	5.52

200 compounds through 8 experimental assays is 1600 data points Q. How do you use this data to make decisions?

	11	, Ž	Compound-79	3.806	3.99	2.38	2.21	0.0533	3.81	5.25	
	12		Compound-140	3.667	3.61	2.3	1.75	0.238	3.67	4.37	
Calculate dowing predictions			Compound-142	4.002	2.83	1.55	2.98	1.18	4	5.24	
Server status:Unavailable (192.168.1.115)	14 ∢	\$	Compound-94	3.353	3.73	2	2.5	0.799	3.35	4.56	-
Ready	1							Rows	29 (0) Columns	21 (0) Selecte	d 1

Visualisation is Important But Not Enough...*

MolName	Structure	pki 5HT1a affinity	logS	logP	2C9 pKi	hERG pIC50	log(BB)	BBB category	HIA category	P-gp category	2D6 affinity category	PPB category
S1-10	22	6	3.884	3.322	3.464	5.636	0.8671	•	•	no	medium	high
S1-11	200-	6	3.697	3.44	3.485	5.72	0.7745	•	•	no	very high	high
S1-12	, yan	6.6	4.124	3.106	3.677	5.684	0.9036	•	•	no	medium	high
S1-13	Q	9	3.659	3.844	3.558	5.65	0.8504	•	•	no	very high	high
S1-14	25	6	4.051	2.992	3.369	5.56	0.4056	•	•	no	high	high
S1-15	~. G	6.5	2.554	4.38	4.502	6.175	0.6534	•	•	yes	medium	high
S1-16	à	5.3	3.698	3.892	3.464	5.646	0.6799	•	•	no	medium	high
S1-18	çenç	7.96	3.444	4.34	3.558	5.647	0.6568	•	•	no	very high	high
S1-19	çaz	6.98	3.927	3.594	3.677	5.677	0.6858	·	•	no	medium	high
S1-20	à car	7.16	3.721	3.487	3.391	5.639	0.2327	•	•	no	very high	high
S1-21	àn	7.54	3.632	3.964	3.485	5.725	0.6016	•	•	no	verg high	high

How can you make a confident decision by looking at these?

Challenge 2: Uncertainty in Data

Caco2 vs. Huredicted estimal Apsorption*

R²=0.81, RMSE=0.8 log units

Requirements for MPO in Drug Discovery

- Interpretable
 - Easy to understand compound priority and how to improve compounds' chances of success
- Flexibility
 - Define criteria depending on therapeutic objectives of project
- Weighting
 - Take into account relative importance of different endpoints to success of project
- Uncertainty
 - Take uncertainty into account, avoid missed opportunitites

Approaches for MPO in Drug Discovery

Multi-Parameter Optimization: Identifying high quality compounds with a balance of properties Curr. Pharm. Des. 2011 (submitted) Download preprint from: www.optibrium.com/community

Approaches for MPO Rules-of-Thumb

• The most famous – Lipinski's Rule-of-Five for oral absorption

logP<5	MW<500
HBD<5	HBA<10

 Many other have been proposed, e.g. Hughes *et al.** explored risk of adverse outcomes in *in vivo* toleration studies

logP<3 TPSA>7	5 Ų
---------------	-----

- Strengths:
 - Simplicity, ease of application and interpretation
- Caveats:
 - Rules tailored to specific objectives lack of flexibility
 - Risk of too rigid application

Rules of Thumb

- How predictive are rules-of-thumb?
 - E.g. Lipinski's RoF applied to 1191 marketed drugs

	RoF result				
	Pass (≤1 RoF Failure)	Fail (>1 RoF Failure)			
Oral	709	59			
Non-oral	333	90			

Approaches for MPO Filtering

Approaches for MPO Desirability Functions*

• Relate property values to how 'desirable' the outcome

Derringer Function)

- Combine multiple properties into 'desirability index'
 - Additive: $D = \frac{d_1(Y_1) + d_2(Y_2) + \dots + d_n(Y_n)}{n}$
 - Multiplicative: $D = (d_1(Y_1) \times d_2(Y_2) \times ... \times d_n(Y_n))^{1/n}$
- Strengths
 - Very flexible; Explicitly weight properties; Easy to interpret
- Caveats
 - No explicit consideration of uncertainty; Need to know criteria *a priori*

Desirability Functions CNS MPO*

CNS MPO = sum of desirabilities for each parameter

- 74% of marketed CNS drugs achieved CNS MPO > 4 vs. 60% of Pfizer candidates
- Correlations observed between high CNS MPO score and good in vitro ADME properties, e.g. MDCK P_{app}, HLM stability, P-gp transport

Desirability Functions CNS MPO and safety*

 CNS MPO score was also found to correlate with safely endpoints:

Approaches for MPO Probabilistic Scoring* – Scoring Profile

²⁰¹¹ Optibrium Ltd. * Segall *et al.* (2009) Chem. & Biodiv. **6** p. 2144

Probabilistic Scoring*

- Property data
 - Experimental or predicted
- Criteria for success
 - Relative importance
- Uncertainties in data
 - Experimental or statistical

- Score (Likelihood of Success)
- Confidence in score

ptibrium Ltd. * Segall et al. (2009) Chem. & Biodiv. 6 p. 2144

Provide Feedback on Influence of Properties Guide redesign to improve chance of success

Balancing Quality and Diversity

Visualising 'Chemical Space' Exploring trends across chemical diversity

Balance Quality Against Diversity Mitigating risk

Case Study Rapid Focus in Lead Optimisation

Challenge

Identify orally active compound for a CNS target. Project 'chemical space' of 3100 compounds

Summary of original project progress

 Focus biased towards one area of chemistry space

Challenge

Identify orally active compound for a CNS target. Project 'chemical space' of 3100 compounds

Summary of original project progress

- Focus biased towards one area of chemistry space
- Poor ADME properties

Property		Desired Value	Importance
logS	>	1	
HIA category	+		
BBB log([brain]:[blood])	>	-0.5	
logP	≤	3.5	
2D6 affinity category	low	medium	
📕 2С9 рКі	≤	6	
P-gp category	no		

Challenge

Identify orally active compound for a CNS target. Project 'chemical space' of 3100 compounds

Summary of original project progress

- Focus biased towards one area of chemistry space
- Poor ADME properties
- Follow-up chemistry exploration
- Nowhere obvious to go next!

Cost so far: >3000 compounds synthesised, 400 compounds tested *in vitro* and 70 compounds tested *in vivo*

A more appropriate balance of properties

Results

Successfully selected same key compounds identified by the project but with:

- **90%** fewer compounds synthesised
- 90% less potency screening
- 70% less in vivo testing

In addition, identified a new area of chemistry with good potential!

Conclusions

- In drug discovery, we must make confident decisions on complex multi-dimensional data
 - Uncertainty in all data
- Requirements for MPO in Drug Discovery
 - Interpretable
 - Flexible
 - Weighting
 - Uncertainty
- Detailed review (submitted to Curr. Pharm. Des.)
 - Multi-Parameter Optimization: Identifying high quality compounds with a balance of properties
 - www.optibrium.com/community
 - matt.segall@optibrium.com

Acknowledgements

- StarDrop group past and present, including:
 - Ed Champness
 - Chris Leeding
 - Iskander Yusof
 - James Chisholm
 - Olga Obrezanova
 - Alan Beresford
 - Dawn Yates

- Dan Hawksley
- Joelle Gola
- Brett Saunders
- Simon Lister
- Mike Tarbit