

Making Priors a Priority

Dr Matthew Segall – matt.segall@optibrium.com ACS Spring Meeting – March 2011

> © 2010 Optibrium Ltd Optibrium™, StarDrop™, Auto-Modeller™ and Glowing Molecule™ are trademarks of Optibrium Ltd.

Overview

- What is a prior?
- Why are priors important?
 - Medical analogy
- Example applications in chemistry
 - Interpreting results
 - Planning screening strategies
 - Multi-parameter optimisation importance of parameters
- Determining priors for key properties
 - An opportunity for open sharing of data
 - Challenges
- Conclusions

What is a Prior?

- A *prior* captures our understanding, or belief, of the likely outcomes of an event before the collection of new information (e.g. a measurement or prediction)
- More specifically, it is a probability distribution of an outcome, P(Y), in the absence of the additional information

Why are Priors Important? Medical Analogy

- In a population the prevalence of a fatal disease is 0.5%
 - Treatment for the disease is risky 25% risk of mortality
 - Simple blood test for disease 95% accurate (specific and sensitive)
- If a patient tests positive, what should you do?
 - What proportion of
 - Answer: 9%
 - o Test 1000 patientest positive, but

positive test will have disease?

- Prior 0×(0.005×0.95+0.995×0.05)=54.5 will ye the disease
- Best decision do nothing!
 - 9% of those that test positive will die due to disease
 - 23% will die unnecessarily due to treatment

Why are Priors Important? Medical Analogy

- What must prevalence of disease be before 95% accurate test is useful?
 - 1.3%
- How accurate must test be to be useful with a prevalence of 0.5%
 - 98%
- Key point: Utility of test depends critically on prevalence of negative outcome being tested for, i.e. the prior

Example Application in Chemistry

Example Application How well does this assay conserve your options?

- You have purchased a series of compounds:
 - You expect 1% of your compounds have a particular kind of toxicity
 - You apply a screening method to all the compounds that is 90% reliable (both 90% sensitive and 90% specific)
 - What percentage of the compounds that fail the screening genuinely have the toxicity?
 - a) About 1%
 - b) About 2%
 - c) About 10%
 - d) About 50%
 - e) About 90%
- Answer?
 - c) Of 1000 compounds, 990 x 0.1 + 10 x 0.9 = 108 would be reported as toxic by the test, of which only 9 really are toxic.
- Easy to overreact to negative results
 - Availability bias (neglect of the prior)*

*A Chadwick and M Segall, Drug Discov. Today, **15**(13/14), pp. 561-9, July 2010

- Two screens for toxicity: in silico and in vitro
 - In silico: cost 1, accuracy 80%
 - In vitro: cost 100, accuracy 95%
 - Cost to prove safety 5,000
 - Net value of safe compound 10,000
- 5 Possible screening strategies

- Two screens for toxicity: in silico and in vitro
- 5 Possible screening strategies:

- Two screens for toxicity: in silico and in vitro
- 5 Possible screening strategies:

- Two screens for toxicity: in silico and in vitro
- 5 Possible screening strategies:

In Silico Only

- Two screens for toxicity: in silico and in vitro
- 5 Possible screening strategies:

In Vitro Only

- Two screens for toxicity: in silico and in vitro
- 5 Possible screening strategies:

No Screen

- Parameters:
 - In silico: cost 1, accuracy 80%
 - In vitro: cost 100, accuracy 95%
 - Cost to confirm safety 5,000; Net value of safe compound 10,000

Strategy	Value	Value
	(Prior for risk 30%)	(Prior for risk 40%)
Double filter	5242	4483
Sentinel	6531	5415
<i>In silico</i> only	5299	4399
<i>In vitro</i> only	6475	5500
No screen	5500	4000

Interactive example <u>http://www.tessella.com/screening-strategy-explorer</u>

Example Application Multi-parameter Optimisation

• E.g. Probabilistic scoring*

Importance values related to downstream risk due to negative result.

* Segall et al. Chemistry and Biodiversity 6(11), p. 2144 (2009)

Determining priors for key properties An opportunity for open data

Determining Priors

- Outcomes for key endpoints for large numbers of compounds
 - E.g. physicochemical properties, ADME*, PK⁺, toxicity...
- Early and late stage endpoints (late most valuable)
 - E.g. hERG inhibition vs. Torsade de points in humans
- Ideal opportunity for sharing data
 - No compound structures required
 - Data is almost free of I.P.

- * Absorption, Distribution, Metabolism, Elimination
- + Pharmacokinetics

Determining Priors Questions and challenges

- What is appropriate population to sample?
 - Even a chemist's intuition is a filter
 - Subdivided by field: Drug discovery, agrochem, cosmetics...
 - Perhaps subdivided into indication: anti-infectives, oncology, pesticide...
- Normalisation of data
 - Different assay protocols
- Insufficient data for late stage outcomes, e.g. clinical
 - Late stage compounds have been heavily filtered
 - Need to use early screening data to infer late-stage outcomes based on reliability
 - Need to share data on reliability

Conclusions

- Knowledge of priors is essential to good decision-making
 - How good does my assay/model need to be to be useful?
- Priors for critical endpoints are essentially unknown
- Challenges for analysis of data
- This is an ideal opportunity for an open data project
 - Outcome will benefit entire community
 - Pre-competitive
- To discuss:
 - <u>www.optibrium.com/community</u>
 - matt.segall@optibrium.com

Stand #1121

* Segall and Chadwick, J. Comp. Aided Mol. Des. 24(12), pp. 957-960 (2010)

Acknowledgements

- Andrew Chadwick Tessella plc.
- StarDrop group past and present
 - Ed Champness
 - Chris Leeding
 - Iskander Yusof
 - James Chisholm
 - Olga Obrezanova
 - Alan Beresford
 - Dan Hawksley
 - Joelle Gola
 - Brett Saunders
 - Simon Lister
 - Mike Tarbit

Stand #1121