Publications
Relevant publications written by current and former members of the Optibrium team. Take a look at the community pages to see copies of the various publications and presentations we’ve published. At the end of this section we’ve also posted a few relevant publications by others.
- Predicting Regioselectivity of AO, CYP, FMO, and UGT Metabolism Using Quantum Mechanical Simulations and Machine Learning
Mario Öeren, Peter J. Walton, James Suri, David J. Ponting, Peter A. Hunt, and Matthew D. Segall
Journal of Medicinal Chemistry (2022) 65(20) pp, 14066-14081
DOI: 10.1021/acs.jmedchem.2c01303 - Prediction of In Vivo Pharmacokinetic Parameters and Time-Exposure Curves in Rats Using Machine Learning from the Chemical Structure
Olga Obrezanova, Anton Martinsson, Tom Whitehead, Samar Mahmoud, Andreas Bender, Filip Miljković, Piotr Grabowski, Ben Irwin, Ioana Oprisiu, Gareth Conduit, Matthew Segall, Graham F. Smith, Beth Williamson, Susanne Winiwarter, and Nigel Greene
Molecular Pharmaceutics (2022) 19(5), pp. 1488-1504
DOI: 10.1021/acs.molpharmaceut.2c00027 - An Open Drug Discovery Competition: Experimental Validation of Predictive Models in a Series of Novel Antimalarials
Edwin G. Tse, Laksh Aithani, Mark Anderson, Jonathan Cardoso-Silva, Giovanni Cincilla, Gareth J. Conduit, Mykola Galushka, Davy Guan, Irene Hallyburton, Benedict W. J. Irwin, Kiaran Kirk, Adele M. Lehane, Julia C. R. Lindblom, Raymond Lui, Slade Matthews, James McCulloch, Alice Motion, Ho Leung Ng, Mario Öeren, Murray N. Robertson, Vito Spadavecchio, Vasileios A. Tatsis, Willem P. van Hoorn, Alexander D. Wade, Thomas M. Whitehead, Paul Willis, and Matthew H. Todd*
J. Med. Chem. (2021) 64(22) pp. 16450-16463 - Imputation of Sensory Properties Using Deep Learning
Samar Mahmoud, Benedict Irwin, Dmitriy Chekmarev, Shyam Vyas, Jeff Kattas, Thomas Whitehead, Tamsin Mansley, Jack Bikker, Gareth Conduit, Matthew Segall
J. Comput. Aided Mol. Des. (2021) 35(11) pp. 1125-1140 - Deep Imputation on Large-Scale Drug Discovery Data
Benedict W J Irwin, Thomas M Whitehead, Scott Rowland, Samar Y. Mahmoud, Gareth J Conduit, Matthew D Segall
Applied AI Lett. (2021) 2(3) p. e31 DOI: 10.1002/ail2.31 - Guiding Drug Optimisation Using Deep Learning Imputation and Compound Generation
Benedict W J Irwin, Alex Wade, Matthew D Segall
International Pharm. Ind. (2020) 12(2) pp. 28-31 - Data Imputation through Deep Learning
Matthew Segall*, Benedict Irwin*, Thomas Whitehead†, Samar Mahmoud*, Greg Shields*, Graham Turner*, Alex Elliott*, Stefan-Bogdan Marcu*, Robert Parini†, Edmund Champness*, Gareth Conduit†‡
*Optibrium Ltd., † Intellegens Ltd., ‡Cavendish Laboratory
Innovations in Pharmaceutical Technology (2020) Autumn/Winter pp. 42-46 - Practical Applications of Deep Learning to Impute Heterogeneous Drug Discovery Data
Benedict W J Irwin, Julian Levell, Thomas M Whitehead, Matthew D Segall, Gareth J Conduit
J. Chem. Inf. Model. 2020, 60, 6, 2848–2857 - Predicting Reactivity to Drug Metabolism: Beyond P450s—modelling FMOs and UGTs.
Öeren M, Walton PJ, Hunt PA, Ponting DJ, Segall MD
J. Comput.-Aided Mol. Des. (2021) 35(4) pp. 541-555 - Predicting pKa Using a Combination of Semi-Empirical Quantum Mechanics and Radial Basis Function Methods
Peter A. Hunt, Layla Hosseini-Gerami, Tomas Chrien, Jeffrey Plante, David John Ponting, and Matthew Segall
J. Chem. Inf. Model. (2020) 60(6) pp. 2989-2997 - Imputation Versus Prediction: Applications in Machine Learning for Drug Discovery
Benedict W J Irwin, Samar Mahmoud, Thomas M Whitehead, Gareth J Conduit & Matthew D Segall
Future Drug Discovery, Vol. 2, No. 2 DOI: 10.4155/fdd-2020-0008 - Capturing and Applying Knowledge to Guide Compound Optimisation
Segall MD, Mansley TE, Hunt P, Champness EJ
Drug Discovery Today (2019) 24(5) pp. 1074-1080 - Imputation of Assay Bioactivity Data Using Deep Learning
Whitehead TM*, Irwin BWJ, Hunt P, Segall MD, Conduit GJ** (*Intellegens, **Cavendish Laboratory)
J. Chem. Inf. Model. (2019) 59(3) pp. 1197-1204 - AI Advances Healthcare Research
Segall MD
Scientific Computing World, December 2018, pp. 21-23 - High-Quality Hits from High-Throughput Screens
Mansley TE, Hunt PA, Champness EJ and Segall MD
Genetic Engineering & Biotechnology News, 15 October 2018, pp. 12-14 - WhichP450: a multi-class categorical model to predict the major metabolising CYP450 isoform for a compound
Hunt PA, Segall MD, Tyzack JD
J. Comp.-Aided Mol. Des. (2018) 32(4), pp. 537-546 - Discovery Decisions – Collaborating in Data Management
Segall MD and Leeding C
European Biopharmaceutical Review, January, 2018, pp 66-69 - Driving Discovery – Predicting P450 Metabolism
Segall MD
European Biopharmaceutical Review, October, 2017, pp 20-24 - Synergy between man and machine – the future of drug development
Segall MD
Scientific Computing World, 13 April 2017 - Practical applications of Matched Series Analysis: SAR transfer, binding mode suggestion, and data point validation
Hunt PA, Segall MD, O’ Boyle N*, Sayle R* (*NextMove Software Ltd)
Future Med Chem. (2017) 9(2), pp 153–168 - Predicting Regioselectivity and Lability of Cytochrome P450 Metabolism Using Quantum Mechanical Simulations
Tyzack JD, Hunt PA and Segall MD
J. Chem. Inf. Model. (2016) 56(11), pp 2180–2193 - Avoiding Missed Opportunities by Analyzing the Sensitivity of Our Decisions
Segall MD, Yusof I, and Champness EJ
J. Med. Chem, (2016) 59(9) pp. 4267-4277 - When Two are not Enough: Lead optimization beyond matched pairs
O’Boyle N*, Sayle R*, Segall MD. (* NextMove Software)
Drug Discovery World, Fall 2015, pp. 55-59 - Breaking free from chemical spreadsheets
Segall MD, Champness EJ, Leeding C, Chisholm J, Hunt P, Elliott A, Garcia-Matrinez H, Foster NW, Dowling S
Drug Discovery Today (2015) 20(9) pp. 1093-1103 - The challenges of making decisions using uncertain data
Segall MD, Champness EJ
Journal of Computer-Aided Molecular Design (2015) 29(9), pp. 809-816 - Developing Chemistry Apps in the Cloud
Clark JD*, Leeding C, Champness EJ (* Integrated Chemistry Design Inc.)
Bio.IT World, February 2015 - Advances in Multi-parameter Optimisation Methods for de Novo Drug Design
Segall MD
Expert Opinion in Drug Discovery (2014) 9(7) pp. 803-817 - Alternative variables in drug discovery: promises and challenges
Abad-Zapatero C*, Champness EJ, Segall MD. (* University of Illinois at Chicago)
Future Med. Chem. (2014) 6(5) pp. 577-593 - Addressing toxicity risk when designing and selecting compounds in early drug discovery
Segall MD, Barber C*. (* Lhasa Limited)
Drug Discovery Today (2014) 19(5), pp. 688-693 - Finding the rules for successful drug optimisation
Yusof I, Shah F*, Hashimoto T$, Segall MD, Greene N*. (* Pfizer, $ Massachusetts Institute of Technology)
Drug Discovery Today (2014) 19(5) pp. 680-687 - Using Bioiosteric transformations for compound prediction
Chisholm J, Segall MD, Champness EJ, Leeding C, Matinez H, Yusof I, Barnard J*, Hayward J* (* Digital Chemistry)
Drug Discovery & Development, July/August 2013, pp. 14-15 - Finding High-Quality Leads in the Chemical Space
Champness EJ, Segall MD
Drug Discovery & Development, June 2013 - Considering the impact drug-like properties have on the chance of success
Yusof I, Segall MD
Drug Discovery Today (2013) 18 (13/14) pp. 659-666 - Applying multi-parameter optimisation in drug discovery
Segall MD
Express Pharma, January 16-31 2013, pp. 29-33 - Getting predictive with bioisosteres
Bouley J
Drug Discovery News (2013) 9(1) pp. 12-14 - An alternative view of drug-like properties
Segall MD
Drug Discovery News (2012) 8(12) p 11 - QED: Hopkins Algorithm Ranks the Beauty of Drug Chemistry
Luchette M
Bio-IT World, August 21 2012 - On balance
Segall MD
Scientific Computing World, Aug/Sept 2012, p. 30 - Applying Multi-Parameter Optimisation in Drug Discovery: Explore Broadly but Focus Quickly on High Quality Chemistry
Segall MD
IPI – International Pharmaceutical Industry (2012) 4(1) pp. 26-32 - Can we really do computer-aided drug design?
Segall MD
Comput.-Aided Mol. Des. (2012) 26(1) pp. 121-124 - Multi-Parameter Optimization: Identifying high quality compounds with a balance of properties
Segall MD
Curr. Pharm. Des. (2012) 18(9) pp. 1292-1310 - Multi-Parameter Optimisation in Drug Discovery
Segall MD
Innovations in Pharmaceutical Technology, 2011, 39 pp. 42-46 - Combining Chemists’ Expertise and a Computers Advanced Capabilities to Generate ‘Good’ Ideas
Segall MD, Campness E, Leeding C, Lilien R*, Mettu R*, Stevens B* (* Cadre Research Labs)
Drug Discovery World, Fall 2011, pp. 15-23 - Multi-parameter optimization: The delicate balancing act of drug discovery October 2011
Segall MD
Drug Discovery News Commentary, October 2011 - Applying Medicinal Chemistry Transformations and Multiparameter Optimization to Guide the Search for High-Quality Leads and Candidates
Segall MD, Champness E, Leeding C, Lilien R*, Mettu R*, Stevens B* (* Cadre Research Labs)
J. Chem. Inf. Model. (2011) 51(11) pp. 2967-2976 - The Risks of Subconcious Biases in Drug Discovery Decision-Making
Segall MD, Chadwick A (Tessella)
Future Med. Chem. (2011) 3(7), pp. 771-774 - Overcoming Bias in Drug Discovery
Segall MD, Chadwick A (Tessella)
Drug Discovery & Development (2011) 14(1) pp. 18-19 - Guiding effective decisions: an interview with Matthew Segall, CEO of Optibrium
Warr W
J. Comp. Aided Mol. Design (2011) 25(2) pp. 103-106 - Making Priors a Priority
Segall MD
J. Comp. Aided Mol. Design (2010) 24(12) pp. 957-960 - Visual Analyses for Guiding Compound Design and Selection
Champness E
Innovations in Pharmaceutical Technology (2010) 34 pp. 32-38 - Overcoming Human Cognitive Bias
Segall MD
Pharma Magazine, Sept/Oct 2010, p 66 - Improving R&D with Better Decision Making
Segall MD, Champness E
Genetic Engineering & Biotechnology News, September 1 2010 (Vol. 30, No. 15) - Overcoming psychological barriers to good discovery decisions
Chadwick A, Segall MD
Drug Discovery Today (2010) 15 (13/14), pp. 561-569 - Gaussian Processes for Classification: QSAR Modeling of ADMET and Target Activity
Obrezanova O, Segall MD
J. Chem. Inf. Model. (2010) 50 (6), pp. 1053-1061 - Beyond Profiling: Using ADMET models to guide decisions.
Segall MD, Champness E, Obrezanova O, Leeding C
Chemistry & Biodiversity (2009) 6(11) pp. 2144-2151 - Send for the Software Specialists
Segall MD
Pharmaceutical Executive Europe (August 2008) p 18 - Automatic QSAR modeling of ADME properties: blood-brain barrier penetration and aqueous solubility
Obrezanova O, Gola JMR, Champness E, Segall MD
J. Comp. Aided Mol. Design (2008) 22(6-7) pp. 431-440 - Why is it still Drug Discovery?
Segall MD
European Biopharamaceutical Review (May 2008) - Gaussian processes: a method for automatic QSAR modeling of ADME properties
Obrezanova O, Csanyi G, Gola JM, Segall MD
J. Chem. Inf. Model. (2007) 47(5) pp. 1847-57 - ADMET property prediction: The state of the art and current challenges
Gola JM, Obrezanova O, Champness E, Segall MD
QSAR Comb. Sci. (2006) 25(12) pp. 1127-29 - Focus on success: using a probabilistic approach to achieve an optimal balance of compound properties in drug discovery
Segall MD, Beresford AP, Gola JM, Hawksley D, Tarbit MH
Expert Opin. Drug. Metab. Toxicol. (2006) 2(2) pp.325-37 - The design and preparation of metabolically protected new arylpiperazine 5-HT1A ligands
Tandon M, O’Donnell MM, Porte A, Vensel D, Yang D, Palma R, Beresford A, Ashwell MA
Bioorg. Med. Chem. Lett. (2004) 14(7) pp.1709-12 - In silico prediction of ADME properties: are we making progress?
Beresford AP, Segall M, Tarbit MH
Curr. Opin. Drug Discov. Devel. (2004) 7(1) pp.36-42 - Modeling aqueous solubility
Butina D, Gola JM
J. Chem. Inf. Comput. Sci. (2003) 43(3) pp. 837-41 - The emerging importance of predictive ADME simulation in drug discovery
Selick HE, Beresford AP, Tarbit MH
Drug Discovery Today. (2002) 7(2) pp. 109-16 - ADME/PK as part of a rational approach to drug discovery
Eddershaw PJ, Beresford AP, Bayliss MK
Drug Discovery Today. (2000) 5(9) pp. 409-414
Relevant publications by others
- In silico prediction of aqueous solubility
Dearden JC
Expert Opin. Drug Discov. (2006) 1(1) pp. 31-52 - Computational models for cytochrome P450: a predictive electronic model for aromatic oxidation and hydrogen atom abstraction
Jones JP, Mysinger M, Korzekwa KR
Drug Metab. Dispos. (2002) 30(1) pp. 7-12 - Electronic models for cytochrome P450 oxidations
Korzekwa KR, Grogan J, DeVito S, Jones JP
Adv. Exp. Med. Biol. (1996) 387 pp. 361-9 - Predicting the regioselectivity and stereoselectivity of cytochrome P450-mediated reactions: structural models for bioactivation reactions
Jones JP, Shou M, Korzekwa KR
Adv. Exp. Med. Biol. (1996) 387 pp. 355-60 - Predicting the rates and regioselectivity of reactions mediated by the P450 superfamily
Jones JP, Korzekwa KR
Methods Enzymol. (1996) 272 pp. 326-35
How to
Stay in Touch
Follow us on LinkedIn or Twitter to catch our regular news, events and announcements – @Optibrium Ltd.
We are always happy to help with any questions you may have, so please feel free to contact us at [email protected]