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Abstract 
Lead optimization projects progress by making successive enhancements to one or more starting structures. This 
is a classic multi-objective optimization procedure where the goal is not only to improve potency but also to 
improve physicochemical and absorption, distribution, metabolism and elimination (ADME) properties. For 
physicochemical and ADME properties, the popular matched molecular pair analysis method has been a 
successful strategy; however, it notably fails in the goal of improving potency. Here we discuss a lead 
optimization approach involving matched series, the extension of matched pairs to more than two R-groups, 
which can successfully be used to guide molecular design towards improved potency. Furthermore, this 
approach retains the attractive features of matched pair analysis in that it is entirely driven by experimental data 
and is a natural fit to the medicinal chemistry approach of designing analogs by successive small changes to an 
existing molecule. 

Introduction 
What molecule should I make next? This is the question that occurs again and again at each step of a lead 
optimization project. Answering this question well may mean the difference between project success and failure, 
or at least between rapid progress and wasting time following numerous dead-ends. 

How one decides which molecule to synthesize will clearly vary from one person to the next, but ultimately it 
boils down to one of two things. The first of these is the medicinal chemist’s experience from working on related 
projects; for example, what worked last time? However, for the most part deciding what compound to make 
next is based on observed activity trends, from which a particular structure-activity relationship is inferred and 
then extrapolated to a new structure. This is commonly referred to as “chemical intuition”, but in fact relies on 
a chemist’s knowledge of potential structure-activity relationships and the relative property values of common 
R-groups. 

Matsy [1] is a lead optimization strategy that combines both of these approaches and, rather than relying on an 
individual or group’s experience, it uses the experience garnered by tens of thousands of medicinal chemists 
and available in the literature. Instead of inferring structure-activity relationships using “intuition”, it bases them 
on this broader experience so that all predictions are made on the basis of previously observed experimental 
results.



 

 

 

Matched Pairs and Series 
The starting point for this method is the concept of a matched pair (or more formally, a Matched Molecular Pair 
or MMP) although, as we shall see, such MMPs are not in themselves sufficient for this purpose. A MMP refers 
to two molecules with the same scaffold but different R-groups at the same position [2], and has become very 
popular in recent years for rationalising trends in SAR [3,4]. The success of this approach is due to the fact that 
relative changes in property values are easier to predict than absolute values. It also fits very well with the 
common lead optimization procedure of changing R-groups, while keeping the underlying scaffold constant. 

Predictions based on this approach work well for physicochemical properties as well as for biological activities 
that correlate highly with such properties. However, in general, MMP analysis does not work well for predicting 
R-groups that improve biological activity. This was most clearly shown in a 2008 study by Hajduk and Sauer at 
Abbott [5] for MMP data drawn from a broad range of targets. Potency changes associated with most MMP 
transformations were found to be nearly normally distributed around zero. The simple reason for this limitation 
of MMP analysis is that for one binding site environment changing group A to group B may increase activity, 
while for another binding site environment it may decrease activity. While attempts have been made to address 
this problem, for example by focusing on MMPs from just the target of interest [6] or with a particular atom 
environment [7], the underlying problem remains. 

But all is not lost. If we revisit the analysis by Hajduk and Sauer, we can show that there may be a way forward. 
Let us take as an example those assays in the ChEMBL database [8] (https://www.ebi.ac.uk/chembl/) with pIC50 
activity data for compounds with ethyl, propyl and butyl as substituents at the same location on a scaffold. Figure 
1a shows the pIC50 for the ethyl analog versus that of the butyl, and sure enough we see a symmetric distribution 
of the activities around zero. In other words, changing ethyl to butyl is equally likely to increase activity as to 
decrease activity, consistent with the results found by Abbott. 

However, what if we include additional knowledge about the context of the matched pair transformation? For 
example, suppose that we already know that the propyl analog has a greater pIC50 than the butyl for our scaffold 
of interest. If we take the subset of the data in ChEMBL where the propyl analog is more active than the butyl, 
and then regenerate the original plot (Figure 1b), the distribution of the ethyl minus butyl activities is now shifted 
to the right away from zero. In other words, knowing that the propyl is more active than the butyl dramatically 
increases the chance that ethyl is also more active. More generally, if we already know additional information 
about activities, it should improve our ability to predict the effect of a given R-group replacement. 

 

Figure 1 – Example of improved prediction of activities given prior knowledge. (a) Histogram of data from ChEMBL 20 
showing the relative binding affinity of ethyl analogs relative to the corresponding butyl analog (for scaffolds where the 
ethyl, propyl and butyl analog have been measured and are not inactive). (b) The additional histogram drawn in bold 
shows the subset of the original data where the propyl analog has greater binding affinity than the butyl. 

 

https://www.ebi.ac.uk/chembl/


 

 

The question is, how best to do this? One approach would be to throw more matched pairs at the problem; 
rather than simply considering two R-groups and the associated MMP, for any three R-groups, consider the three 
associated MMPs. However, this quickly becomes unwieldy once one progresses to four R-groups and the 
associated six MMPs or even longer series with larger numbers of combinations.  

In fact, a much simpler and more elegant approach is to consider all of the associated R-groups as parts of a 
single Matched Molecular Series (MMS), a concept introduced by Bajorath in 2011 [9]. This is simply a 
generalisation of the MMP concept to a series of any length, that is, N molecules with the same scaffold but 
different R-groups at the same position. With a matched pair, we are asking the question “Will changing B to C 
increase the activity?”; in contrast, if using a matched series of length 3, we are asking “Will changing B to C 
increase the activity, given that B is more active than A?” In other words, using longer series introduces a context 
regarding a particular binding site environment.  

Although the term matched pairs was first described in 2005 [2], and the limitations of the approach were 
already shown by Hajduk and Sauer in 2008, it is interesting to ask why it took so long to start looking beyond 
pairs to longer series? One hypothesis is that by naming the concept using the term “pair”, chemists focused on 
thinking in terms of two R-groups exactly and found it difficult to think outside this box. Furthermore, the 
concept of matched pairs has become synonymous for many with “a matched pair transformation” (that is, a 
replacement of a terminal R Group), and this cemented the idea of two R-groups as a fundamental concept, 
rather than just a specific instance of a general case. 

The following sections describe two approaches to guide lead optimisation using MMS, namely SAR Transfer and 
Matsy. In both cases, it will be apparent that such predictions are at their least reliable when based on matched 
pair data rather than data from longer matched series. 

SAR Transfer predictions 
The concept of SAR Transfer, as introduced by Bajorath [10], is best explained with an example. Suppose that 
we have synthesised the set of 8 analogs shown in Figure 2 that have different R-groups at a particular location 
on a common scaffold (a). This, of course, is a MMS of length 8. Having measured the biological activities of 
these analogs, we need to decide what R-group to make next. One approach to do this is to search a database 
of biological activities to find MMS containing the same 8 R-groups (or a large subset thereof) and where the 
order of the activities of the analogs is a close match to the original series (this can be measured using rank 
correlation). Having found such a match, e.g. the scaffold (b) and its corresponding R-groups, it is a reasonable 
assumption that any additional R-groups in this new series  that have improved activity relative to the original 8 
R-groups, may also further improve the activity for the original series involving scaffold (a). In other words, we 
are transferring SAR from a database match to our own series. For the particular case in the example, the NH2 
and SMe groups may offer improved activity for scaffold (a) based on the match to scaffold (b). 

Figure 2 – Example of SAR Transfer. The arrows indicate potential SAR transfer from 
the matched series involving scaffold (b), CHEMBL772766 [11], to that involving 
scaffold (a), CHEMBL768956 [12]. The lines joining the columns indicate the 
correspondence between the rank orders. In this case the rank correlation as 
measured by Kendall’s tau is 0.93 as all of the activities are in the same order apart 
from the CF3 and H activities 



 

 

It should be clear that this approach is more likely to work as the number of R-groups in common increases, and 
the higher the correlation of the relative activities of the R-groups in the series. In particular, this is a useful 
technique to identify gaps that are worth exploring in a dense R-group matrix; for example, a scaffold with two 
R-group positions where many of the R1xR2 combinations have been synthesised and tested. 

Unfortunately, the longer the MMS, the less likely it is that a match to a particular series will be found in a 
reference database, let alone a match with a high correlation of activities. On the other hand, if the length of 
the MMS is short, even if the activities have perfect correlation, you are unlikely to be confident that the SAR 
can be transferred to the original series from a single match in the reference database. Furthermore, the number 
of matches to a short series may be of the order of hundreds or even thousands. The next section describes the 
Matsy method, an approach that was developed to handle this situation. 

Matsy 
The Matsy algorithm [1] can be considered a statistical version of the SAR Transfer method that can handle 
predictions based on short MMS. The origin of the method is the observation that, given a set of R-groups, 
certain activity orders are found more commonly in matched series composed of those R-groups. Given an 
existing matched series, the algorithm searches an activity database for all R-groups that have been measured 
along with those in the input, and calculates the percentage of times each R-group increased the activity beyond 
the most active R-group in the input series. The R-groups with the highest percentages are presented as the 
most likely candidates to try next.  

Figure 3 presents this approach in the context of a MMS database where only five matches are found in the 
database. In this case, the R-group D had improved activity relative to the best R-group in the query (A) three 
times out of three, i.e. 100% of the time; in contrast, C only improved the activity once out of four times, i.e. 
25% of the time. In practice a higher cut-off is applied to the number of observations so that the user can have 
some confidence in the results. 

A more realistic example would be to search a MMS database derived from ChEMBL. Let’s assume that we have 
synthesised a matched series in which ethyl is more active than propyl and propyl itself is more active than 
methyl (that is, Et > Pro > Me). The top prediction from the Matsy algorithm is cyclopentyl on the basis of 23 
observations in ChEMBL of which 39% increased the activity. The next best prediction is a bromine, which 
increased activity 38% of 21 times. It is worth noting that swapping an ethyl with a bromine will reduce the logP; 
this illustrates the fact that the predictions are not solely driven by logP (a frequently asked question), but are 
driven by observed trends in the data. 

Figure 3 – Overview of Matsy method. The Matsy method works by searching a database of matched series for matches to 
a query matched series. In contrast to SAR transfer, only matches with perfect correlations are considered (that is, the same 
exact activity order).  Information on R-groups in the matches is then collated into a table. This image was previously 
published in O’Boyle et al [1]. 



 

 

Practical application of Matched Series to guide design 
As discussed, MMPs have proved to be attractive because the corresponding transformations are easily 
interpreted; the improved predictive power of MMS can also be accessed in an intuitive way. Existing series of 
compounds can be analysed to find corresponding matched series in a database and, from these, automatically 
generate new suggestions for optimisation. To gain confidence in the rationale for these suggestions, the 
underlying experimental evidence can be presented and easily explored. Coupling this with predictive modelling 
of other properties enables true multi-parameter optimization to quickly prioritise new compounds to pursue, 
as illustrated in Figure 4. 

 

Figure 4 – Example of the output from Matsy. The data set to the right shows the suggested compounds and the R-groups 
and scaffolds from which they derive, along with the percentage of observations that improve the activity. This is 
supplemented by predicted physicochemical and ADME properties and a score against a multi-parameter profile of 
property criteria. The selected compound is shown in more detail on the left, with the suggested substitution highlighted 
and a table below showing the experimental evidence provided by the corresponding matched series in ChEMBL. 

Conclusion 
The term Matched Molecular Pair made concrete a concept and technique that medicinal chemists had been 
aware of for years previously; namely that comparisons between the properties of two molecules that differ in 
a single substituent may be used to guide lead optimisation. However, the focus on two molecules rather than 
a set of molecules has hindered advances in property prediction. Now that there is an increasing awareness of 
Matched Molecular Series among chemists, we hope that they will start to look beyond matched pairs to 
matched series based techniques such as SAR Transfer and Matsy that overcome some of the limitations of 
matched pairs and open up new ways of thinking about, searching and predicting structure-activity relationships. 
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