

Similarity to SAR - Interactive navigation of similarity relationships to guide optimization

ACS Spring National Meeting. CINF, March 24th 2015 <u>Matthew Segall</u>, Edmund Champness, James Chisholm, Chris Leeding, Peter Hunt, Alex Elliott, Samuel Dowling, Hector Garcia Martinez matt.segall@optibrium.com

Optibrium[™], StarDrop[™], Auto-Modeller[™], Card View[™] and Glowing Molecule[™] are trademarks of Optibrium Ltd

Overview

- Measures of similarity
- Applications of similarity to understand structure-activity relationships (SAR)
 - Clustering
 - Activity cliffs/landscapes
 - Matched pair analysis
- Interactive exploration of compound relationships
 - Card View[™]
- Example applications
- Conclusions

Measures of Compound Similarity

- Fingerprint similarity
 - Path-based, MACCS, circular...
 - Tanimoto (or similar) index
- Similarity in properties
 - Euclidean distance in descriptor space
- Common substructure
- Matched-pairs
 - Compounds that differ by one small substitution
- (Not explicitly discussing 3D similarity in this talk)

Applications of Similarity to SAR Clustering

- Group together 'similar' compounds
- Objective:
 - Identify groups with good properties or interesting SAR
- Challenge:
 - Clusters often do not correspond with chemists' interpretation of chemical series

Applications of Similarity to SAR Activity Cliff Detection

- Objective
 - Find small structural changes that result in a large change in activity
- Explore nearest neighbours to a reference compound
- Structure-activity landscape index (SALI)

$$SALI_{i,j} = \frac{\left|A_i - A_j\right|}{1 - sim(i,j)}$$

Applications of Similarity to SAR Activity Landscapes

- All-by-all comparison
- 'Rough' regions
 - large changes in activity result from small changes in structure
 - Interesting SAR
- 'Flat spots'
 - Limited opportunity for optimisation of activity
 - Opportunity to optimise different property without having negative impact on activity

Applications of Similarity to SAR Matched Molecular Pair Analysis (MMPA)

- Compare compounds that differ only by one, small substitution
- Objective:
 - Find replacements (transformations) with a consistent, significant impact on activity
- Challenge:
 - Often context-dependent, particularly for target activity
 - Where does transformation apply?

Interactive Exploration of Compound Relationships

- Freedom from the constraints of 'chemical spreadsheets'
 - Represent compound relationships
- Cards
 - Show relevant compound
 - Complete freedom to move
- Stacks
 - Group compounds
 - Summarise and compare data
- Links
 - Highlight compound relationships
- Intuitive visualisation of SAR
 - Clustering, activity landscapes, matched molecular pairs...

- Freedom from the constraints of 'chemical spreadsheets'
 - Represent compound relationships
- Cards
 - Show relevant compound
 - Complete freedom to move
- Stacks
 - Group compounds
 - Summarise and compare data
- Links
 - Highlight compound relationships
- Intuitive visualisation of SAR
 - Clustering, activity landscapes, matched molecular pairs...

- Freedom from the constraints of 'chemical spreadsheets'
 - Represent compound relationships
- Cards
 - Show relevant compound
 - Complete freedom to move
- Stacks
 - Group compounds
 - Summarise and compare data
- Links
 - Highlight compound relationships
- Intuitive visualisation of SAR
 - Clustering, activity landscapes, matched molecular pairs...

aporphines

- Freedom from the constraints of 'chemical spreadsheets'
 - Represent compound relationships
- Cards
 - Show relevant compound
 - Complete freedom to move
- Stacks
 - Group compounds
 - Summarise and compare data
- Links
 - Highlight compound relationships
- Intuitive visualisation of SAR
 - Clustering, activity landscapes, matched molecular pairs...

Example Applications

Conclusion

- Many different measures of 'similarity'
- Similarity measures can help us to identify interesting chemistries and SAR
- Challenges:
 - 'Similarity' is in the eye of the beholder
 - When can SAR be transferred to guide further optimisation?

- Intuitive and interactive environments such as Card View provide synergy between:
 - Algorithms' abilities to analyse complex data
 - Expert's understanding of chemistry
- Segall *et al.* "Breaking Free from Chemical Spreadsheets" Drug Discov. Today (in press)
 - Download from <u>www.optibrium.com/community/publications</u>
- For more information: <u>www.optibrium.com</u> or visit **Booth #1219**