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Abstract 
We describe methods for predicting Cytochrome P450 (CYP) metabolism incorporating both pathway-specific 
reactivity and isoform-specific accessibility considerations.  Semi-empirical quantum mechanical (QM) 
simulations, parameterized using experimental data and ab initio calculations, estimate the reactivity of each 
potential site of metabolism in the context of the whole molecule. Ligand-based models, trained using high 
quality regioselectivity data, correct for orientation and steric effects of the different CYP isoform binding 
pockets. The resulting models identify a site of metabolism in the top 2 predictions for between 82% and 91% 
of compounds in independent test sets across seven CYP isoforms. In addition to predicting the relative 
proportion of metabolite formation at each site, these methods estimate the activation energy at each site, from 
which additional information can be derived regarding their lability in absolute terms.  We illustrate how this 
can guide the design of compounds to overcome issues with rapid CYP metabolism. 
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Introduction 
The development of methods to predict the sites, products and rates of metabolism is an important avenue of 
research and finds application in the development of drugs, cosmetics, nutritional supplements and 
agrochemicals.  It is necessary to understand the pharmacokinetics of a molecule and ensure that it has sufficient 
exposure at the target to exert its therapeutic effect.  In this regard it would be helpful to give an absolute 
prediction of the rate of, or at least the lability of a compound to, metabolism, rather than just a rank ordering 
of sites; a factor often neglected by metabolism prediction tools. It is also important to predict the formation of 
toxic metabolites, which contributes to the high attrition rates experienced in the development of new chemical 
entities, the imposition of black-box warnings or even the withdrawal of approved pharmaceuticals.  Thus, the 
ability to identify potential toxic metabolites early and make predictions about metabolic stability are of crucial 
importance in the drug discovery process. 

The cytochrome P450s (CYPs) are a family of heme-containing enzymes involved in the phase-I metabolism of 
over 90% of drugs currently on the market. [1]  The CYP family consists of 57 isoforms [2] with the largest 
contribution to xenobiotic metabolism coming from CYP3A4, the most promiscuous isoform, followed by 
CYP2D6 and CYP2C9.  A comprehensive overview of the structure, reactivity and catalytic cycle of CYPs can be 
found in the review paper from Shaik et al.. [3] 

The catalytic action of CYPs is predominantly that of a monooxygenase: 

𝑹𝑯 + 𝑶𝟐 + 𝟐𝑯+ + 𝟐𝒆− → 𝑹𝑶𝑯 + 𝑯𝟐𝑶  (1) 

where RH is the substrate molecule.  The most common reactions catalyzed by CYPs involve the insertion of a 
single oxygen into an organic molecule, such as C=C epoxidation, aromatic C oxidation and aliphatic C 
hydroxylation, the last example often leading to N-dealkylation or O-dealkylation if oxidation occurs on a suitable 
leaving group in an amine or ether moiety.  The addition of oxygen into the substrate is a precursor to excretion 
from the body, driving an increase in polarity and hydrophilicity and facilitating Phase II metabolism pathways 
such as glucuronidation. 

The heme moiety at the catalytic center of the CYPs is conserved across all isoforms, where a highly activated 
oxy-heme, formed by cleavage of molecular oxygen, is generated within the catalytic cycle, as shown in Figure 
1. In addition to the main catalytic cycle there are two significant decoupling pathways, labelled D1 and D2, 
resulting in the formation of hydrogen peroxide and water respectively and returning the active site heme to an 
inactivated state. The relative rate of decoupling compared to substrate metabolism will influence the observed 
rate of the conversion of substrate into metabolites and is an important consideration when making absolute 
assessments of metabolic stability. 

 

Figure 1 The catalytic cycle of the Cytochrome P450 enzymes.  The decoupling pathways to form hydrogen peroxide and 
water are labelled D1 and D2 respectively. 
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Experimental investigation of xenobiotic metabolism can be both resource and time consuming, which has 
encouraged the development of computational techniques.  These can be separated into two distinct categories: 
ligand-based and structure-based.  In the first approach, structures and properties of known substrate or non-
substrate ligands are modeled to develop structure-activity relationships.  The second approach is focused on 
the structure of the metabolizing CYP enzyme, its known reaction mechanisms and its interactions with 
substrates. Structure-based methods include docking, to identify potential ligand conformations in the context 
of the enzyme active site [4]; molecular dynamics simulations, which can estimate the energetics of binding [5] 
[6] and QM/MM methods, which combine a quantum mechanical description of the catalytic reaction center 
while capturing the effects of the surrounding protein structure using an empirical molecular mechanics force 
field [7]. Structure-based methods can provide useful insight into the three-dimensional influence of the protein 
structure on the site of reaction and binding affinity, but are limited by the availability of good protein structures 
from crystallography and the flexibility of many P450 isoforms, in particular CYP3A4, which is problematic to 
take into consideration in a reasonable time-frame. The available evidence also suggests that structure-based 
methods do not, at present, improve the accuracy of predictions over ligand-based approaches [8] [9]. For a 
general overview of current computational tools to predict sites of metabolism (SOM) the reader is referred to 
the many comprehensive review papers. [10] [11] [12] [13] [14]  

Most metabolism prediction tools incorporate some form of reactivity and accessibility considerations.  The 
method described herein is no exception: a ligand-based approach is used to model steric and orientation effects 
whilst the electronic activation energy is modeled using quantum mechanical (QM) simulations to calculate the 
energies of substrates and reaction intermediates for each potential SOM. This approach offers several 
advantages: 

 QM methods are based on fundamental physical principles and therefore transfer well between 
chemical classes; they do not rely on specific examples being present within a training set used to fit 
an empirical model 

 Each potential SOM is considered in the context of the whole molecular environment in which it 
resides, rather than identifying fragments within a substrate and treating each as a discrete uniform 
entity regardless of neighboring functional groups 

 QM methods can estimate the activation energy of the rate-limiting step of the oxidation reaction, 
allowing comparison of lability on an absolute scale. 
 

The previously published SMARTCyp method [15] also uses a QM-based approach to predict CYP SOM. However, 
the approach differs from that described herein in that the SOMs are ranked based on a look-up table of small 
functionalities for which the activation energies have been previously calculated using ab initio density 
functional (DFT) methods. The use of ab initio QM methods avoids the need for detailed experimental data on 
which to base estimates of the activation energies. However, these calculations are computationally very 
expensive and the use of a look-up of pre-calculated results is required to return results in a practical time-
frame. Therefore, this approach does not take into account potential long-range effects due to the environment 
of the whole molecule, an important factor for a medicinal chemist developing a lead series and aiming to predict 
the likely impact of structural changes on metabolic stability. 

The use of semi-empirical QM calculations that estimate the activation energies for each aliphatic and aromatic 
SOM have previously been described. [16] Semi-empirical methods are significantly faster than ab initio methods 
and therefore can be applied to an entire substrate on a routine basis. However, they typically require detailed 
experimental data with which to parameterize a free energy relationship and therefore these models do not 
include less common, but important, pathways such as epoxidation, or N- and S-oxidation, due to the lack of 
sufficient experimental data. 

The methods described herein build on both of these methods to achieve transferability, application to the 
whole substrate to explicitly consider the molecular environment of each SOM and computational efficiency, 
returning results in approximately 1-2 minutes per compound on a single CPU. In the following section, the 
theory and implementation of the models will be explained in detail.  The performance of the models on 
independent test sets will be presented in the Results section with comparisons made to the SMARTCyp [15] 
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method. Finally, three example applications will be presented to illustrate how the models can provide valuable 
guidance to redesign compounds and overcome issues due to rapid CYP metabolism.   

Theory and Implementation 
Modeling Principles 

The key factors that determine the SOM are reactivity and accessibility.  The models described herein estimate 
the activation energy at each potential SOM in a substrate using fundamental and transferable QM methods, 
rather than relying on empirical pattern matching with a limited domain of applicability.  The QM models are 
independent of isoform, reflecting the consistent reaction pathways across isoforms. 

However, the binding pockets of the different CYP isoforms differ in size, shape and chemical composition and 
influence the orientation of the substrate relative to the reactive oxy-heme core.  Electrostatic, hydrogen 
bonding and lipophilic interactions between substrate and CYP binding pocket have varying effects across 
isoforms and will cause different orientations to be favorable.  In addition, the steric bulk within a substrate will 
influence the accessibility of sites to the reactive oxy-heme core, with those sites embedded towards the center 
being less accessible than those in open sites on the periphery of the substrate.  These steric effects are also 
isoform specific, as the different sizes of the CYP binding pockets can accommodate different levels of steric 
hindrance.  The models described herein are able to capture these orientation and steric effects with ligand-
based models trained on isoform-specific data sets, enabling adjustments to be made to the QM-generated 
electronic activation energy that are specific to each isoform. 

The relative rate of metabolism for a site can be calculated from the activation energy, Ea, for the rate-limiting 
step in the reaction pathway, as the rate is proportional to the negative exponential of the activation energy 
(the Arrhenius equation): 

𝒌𝒊 ∝ 𝒆
−𝑬𝒂𝒊

𝒌𝑻 ,  (2) 

where ki is the relative rate of metabolism and Eai is the activation energy of site i, k is the Boltzmann constant 
and T is the temperature. 

As discussed above, by directly calculating the activation energy, the lability of sites can be compared on an 
absolute scale between compounds, rather than just a relative ranking of sites within a compound. This is 
achieved by comparing the rate of product formation with that of a decoupling pathway, to give an absolute 
assessment of the efficiency of the product formation step in the catalytic cycle.  This enables a medicinal 
chemist to identify likely metabolically vulnerable positions in a molecule and can be used to guide development 
away from compounds with potentially rapid clearance.  In the remainder of this section the various aspects of 
the CYP metabolism prediction models will be described in detail.  

Quantum mechanical models of electronic effects 

The oxidizing species and the chemical mechanisms of oxidation are the same for all CYP isoforms.  This allows 
the intrinsic vulnerability of the sites on a potential substrate to be calculated with reference only to the 
structure of that molecule.   

The oxidation reactions proceed via different pathways depending on the nature of the site of metabolism on 
the substrate: aliphatic hydroxylation proceeds via an initial hydrogen abstraction followed by reaction of the 
ferryl oxygen with the alkyl radical, a process known as the rebound mechanism; [17] alkene epoxidation 
proceeds via activation of the double bond to form an iron alkoxy radical species in a tetrahedral orientation; 
[18] aromatic C oxidation proceeds via activation of an aromatic bond [19] followed by an intra-molecular 
hydrogen atom transfer known as “NIH-shift' [20]; and direct oxidation of hetero atoms such as sulphur and 
nitrogen proceeds via bond formation with the ferryl oxygen, [21] [22] although often dealkylation reactions are 
favorable over direct oxidation. 

The reactivity model performs a QM calculation to estimate the 'electronic' activation energy, ΔHA, for every 
potential site of metabolism, using knowledge of the reaction pathway for that site. ΔHA is the energy of the 
transition state relative to that of the reactants for the rate limiting step of the reaction pathway. These 
calculations are performed using AM1, [23] a quantum mechanical approach based on a semi-empirical 
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Hamiltonian1. While less accurate than a full ab initio simulation, AM1 is many times faster.  Ab initio simulations 
have been used to identify systematic errors due to the use of AM1 and correction factors are applied within 
the electronic model. [15] [16] 

Direct calculation of activation energies is computationally very expensive due to the need to perform a 
transition-state search. Instead, the heat of reaction, ΔHR, is calculated from the heat of formation of the 
substrate and reaction intermediates and a Brønsted relationship [24] is used to calculate an approximation to 
ΔHA (as a linear relationship has been shown to exist between the activation energy, ΔHA, and the heat of 
reaction ΔHR,). The parameters of the Brønsted relationship can be derived from detailed experimental 
regioselectivity data where this is available. [16] [25] However, in some cases there are insufficient experimental 
data and, instead, high level ab initio calculations can be used to accurately calculate the activation energies 
which, in turn, can be used to derive the parameters of the Brønsted relationship for the faster, semi-empirical 
AM1 calculations [26] [27]. 

However, due to the differences in the chemical mechanisms and methods for calculation of each of the 
pathways leading to oxidation, the energy scales of the calculated activation energies will differ. Therefore, in 
order to compare the rates of reactions that proceed by different pathways, the activation energies must be on 
the same scale and therefore a normalization must be applied. To achieve this, the activation energy scale 
relating to the abstraction of Hydrogen from aliphatic carbon sites is used as a reference and calculations 
performed with other methods are transformed onto this energy scale. Figure 2 shows the linear relationship 
between the activation energies calculated using the ab initio B3LYP DFT method, as published by Rydberg et 
al., [15] and those estimated from ΔHR, calculated with AM1 and a Brønsted relationship, for hydrogen 
abstraction sites, as described below. 

Further details of the calculations performed for each of the reaction pathways modeled are provided in the 
next few subsections. 

Hydrogen abstraction reactions 

The rate limiting step in the formation of a metabolite by hydrogen abstraction has been identified as the 
abstraction of the hydrogen from the substrate by the oxy-heme and formation of an alkyl radical intermediate.  
In the Brønsted relationship used to estimate the activation energy, an additional linear term involving the 
ionization potential has also been found to be important to capture resonance effects in the transition state. 
[25] Using detailed experimental measurements of the relative rates of product formation at different sites of 
the same molecule, this pathway was modelled as described in Korzekwa et al. [25] to estimate ΔHA for each 
potential site of hydrogen abstraction.  

Aromatic oxidation 

Aromatic oxidation progresses by formation of a tetrahedral intermediate between the substrate and oxy-heme 
at the site of metabolism, followed by rearrangement to form a hydroxylated product.  The formation of the 
tetrahedral intermediate is the rate limiting step in this process and the activation energy was also found to be 
proportional to the heat of reaction.  Using experimental measurements of the relative rates of formation of 
different metabolites on the same molecule, the parameters of this relationship can be determined and ΔHA 
calculated on the same scale as that for hydrogen abstraction, as described in detail in Jones et al.. [16] 

 

                                                                 
1 Initial low-energy substrate geometries are generated with Corina [40] as input to AM1 and further optimized 
within the AM1 calculations. Although the reaction energies can vary for different conformations of flexible 
substrates, the overall impact on the accuracy of prediction was found to be small. Therefore, for computational 
efficiency we consider only a single conformation for each substrate. 
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Figure 2 Graph showing the linear relationship between H-abstraction activation energies calculated using DFT and the 
models based on AM1. The points represented by blue diamonds show the average ΔHA, estimated using a Brønsted 
relationship based on ΔHR calculated with AM1, plotted against the single activation energy value assigned to the 

corresponding sites in SMARTCyp, derived from DFT transition state calculations. [15] While only a single activation 

energy is assigned to each class of site by SMARTCyp, in practice there may be significant variations between similar sites 
due to different molecular environments in which they occur. To illustrate this, the error bars show one standard deviation 
in the ΔHA values calculated using AM1 on the full molecules. These averages were calculated over a total of 2252 sites on 
a wide diversity of compounds. The minimum number of sites in each class for which an average is shown was 18. The 
transformation of N oxidation and hydroxylation energies from DFT, on the basis of this linear relationship, is represented 
by the red squares. 

Double bond epoxidation 

 Similar to aromatic oxidation, the epoxidation of a carbon-carbon double bond proceeds via the formation of a 
tetrahedral intermediate, followed by rearrangement to form the epoxide. [28]  The formation of the tetrahedral 
intermediate is again the rate limiting step, with the activation energy found to be proportional to the heat of 
reaction. 

There are insufficient experimental data with which to confidently parameterize a Brønsted relationship and, in 
this case, we rely on activation energies calculated with ab initio DFT calculations that were shown to agree with 
experimental observations, as described in Kumar et al.. [28] In this case, AM1 calculations of ΔHR exhibit an 
excellent correlation with the ab initio activation energies, as shown in Figure 3. This enables the estimation of 
the DFT activation energy from the AM1 ΔHR, which, in turn, can be transformed to calculate ΔHA on the same 
energy scale as that for hydrogen abstraction, using the linear relationship shown in Figure 2. 

Epoxidation proceeds by formation of a tetrahedral intermediate with the carbon at either end of the double 
bond. Therefore, ΔHA is calculated for both potential sites and the lowest value is used to estimate the relative 
rate of epoxidation of the corresponding double bond. 
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Figure 3 Graph showing the linear relationship between ΔHR calculated with AM1 and ΔHA calculated with DFT for 

potential sites of double bond epoxidation, as published by Kumar et al.. [28] 

 

Other direct oxidation pathways 

For S-oxidation, N-oxidation and hydroxylation, and other pathways including desulfurization of 
phosphothioates, oxidation of disulfides and aldehyde oxidation/deformylation, there are limited experimental 
data regarding the rates of these reactions relative to other sites on the same compounds. Furthermore, ab 
initio DFT calculations indicate that there is less variation in these rates between similar functionalities.  
Therefore, for these sites, activation energies derived from ab initio DFT calculations published by Rydberg et al. 
[15] were transformed onto the same energy scale as the other sites described previously, using the linear 
relationship shown in Figure 2. As an illustration, the transformation of N-oxidation and -hydroxylation energies 
using this linear relationship is also shown in Figure 2. 

Accessibility: steric and orientation effects  

In addition to the intrinsic vulnerability of a site in a molecule to oxidative attack, the accessibility of that site to 
the oxy-heme core will also influence the relative rate of metabolism.  This effect is calculated as a correction to 
the activation energy due to the orientation of the molecule within the active site and steric hindrance by nearby 
atoms in the substrate.   

Orientation effects are modeled by descriptors representing the topological distance to important 
functionalities such as acidic, basic, hydrogen bond donor/acceptor and lipophilic groups that interact with key 
residues in the CYP active site.  The steric accessibility of a potential site of metabolism depends on the 
surrounding atoms in the substrate and will be influenced by nearby bulky functionalities or whether the site is 
part of a ring, a conjugated system or an aliphatic chain.  The steric effects are modeled using descriptors 
representing the distance to functionalities introducing steric bulk surrounding the SOM. These functionalities 
are defined as SMARTS patterns [29] and some examples are given in Table 1. 
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Table 1 Example definitions of functionalities from which distances are calculated as steric and orientation descriptors 
used to model accessibility of potential sites of metabolism in ligand-based models. 

Descriptor Type Functionality SMARTS Description 

Orientation Basic group [N;+0;X3] Non-conjugated amine 

Orientation Acidic group [\#8;H]-C=O Carboxylic acid 

Orientation H-bond donor [\#7,\#8,\#9;!H0] Intrinsic donor 

Orientation H-bond acceptor [N;!X4] Nitrogen acceptor 

Steric Heavy atom [!#1] Non-Hydrogen 

Steric Ring atom [!#1,R] Non-Hydrogen in a ring 

 

Isoform-specific data sets have been carefully curated from the literature, as described in more detail in the 
following subsection, with the steric and orientation descriptors calculated for all sites in all molecules.  Principal 
component regression models [30] were trained on these data sets using knowledge about the metabolic fate 
of each site to set the dependent variable: 0 for a non SOM, 1 for a primary SOM, 0.5 for a secondary SOM and 
0.25 for a tertiary SOM.  In order to generate an adjustment to the electronic activation energy, ΔHA, it is 
necessary to calculate the adjustment on the same energy scale as ΔHA.  This is achieved by including the ΔHA 
in the regression and scaling the descriptor regression coefficients relative to the ΔHA regression coefficient.  
These scaled coefficients can then be applied to descriptors for new molecules and the resulting correction 
added to the ‘electronic’ activation energy, ΔHA, to calculate the estimate of activation energy, Ea, adjusted for 
steric and orientation effects.  

Data Curation 

A detailed review of the primary literature was performed to prepare high quality datasets of isoform-specific 
human CYP substrates annotated with SOM.  The papers were manually parsed to extract primary, secondary 
and tertiary SOM, along with the identity of the major and minor metabolizing CYP isoforms.  The emphasis was 
on high quality data, retaining only human data and excluding data generated with inappropriate experimental 
conditions, such as un-physiological substrate concentrations.  The consequence of this is that the data sets are 
smaller than some of those previously published. [9] [31]  However, analysis of the chemical space covered by 
the CYP data sets against launched drug space shows that good coverage of drug-like chemical space has been 
achieved as illustrated in Figure 4 and the higher quality data is expected to result in more accurate models. 

Table 2 summarizes the number of compounds in the training set for each isoform, used to fit the contributions 
of the steric and orientation descriptors, and the independent test sets, used to validate each model. The data 
sets are available in the supplementary information for inspection, including references to the primary literature 
from which the SOMs were identified (see Supplementary Information below). 

There is an element of judgement to be applied when classifying sites within a molecule as primary, secondary 
or tertiary and identifying major/minor isoforms, with reliance placed on kinetic data from expressed 
supersomes and isoform-specific inhibition experiments with human liver microsomes.  Variability between 
assays makes direct comparison of experimental data between publications challenging, but efforts have been 
made to make classifications across different molecules consistent. This was achieved by taking the consensus 
of multiple reviewers of the data, in addition to the views of the authors of the original paper, and looking for 
confirmation of the classifications across multiple assay protocols.  

Table 2 The numbers of compounds in the training and independent test sets of detailed regioselectivity data used to 
build and validate the models described herein. These data sets are provided as supplementary information. 

CYP Isoform Ntraining Ntest 

CYP1A2 144 57 

CYP2C8 80 27 

CYP2C9 145 49 

CYP2C19 136 49 

CYP2D6 147 56 

CYP2E1 76 30 

CYP3A4 220 84 
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Figure 4 Illustration of the chemical space covered by the CYP data sets (red points) compared with approximately 1,300 
launched drugs (blue points), generated using StarDrop. [32]  In this chemical space plot, the proximity of two points 
represents the structural similarity between the corresponding compounds defined using a Tanimoto index based on a 2D 
path-based fingerprint. The distribution of points is generated using the t-distributed stochastic neighbor embedding 
algorithm. [33] 

Calculating Regioselectivity 

The regioselectivity of metabolism is the proportion of metabolism that occurs at each site.  This proportion is 
given by the rate of metabolism at that site relative to the sum of the rates for all potential sites of metabolism.  
The advantage of calculating an approximation to the activation energy is that a relative rate can be generated 
via Equation 2, allowing the regioselectivity of metabolism at site i to be given by: 

𝑹𝒊 =
𝒌𝒊

𝒌𝒕𝒐𝒕𝒂𝒍
× 𝟏𝟎𝟎 ,  (3) 

where Ri is the predicted proportion of metabolism at site i, expressed as a percentage, and 𝑘𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑘𝑖all sites . 
Therefore, potential SOM can be ranked by their corresponding values of Ri. 

Calculating Lability 

The regioselectivity of metabolism describes the relative rate of metabolism of each potential site on a molecule.  
However, regioselectivity does not itself provide information on the absolute vulnerability or lability of each site 
to metabolism.     

 The lability of each site is derived by comparison of the predicted rate of the product formation step for the site 
with the water formation decoupling pathway in the catalytic cycle, labeled D2 in Figure 1.  The rate of the 
decoupling pathway is often measured using an intrinsic isotope effect method. [34]  If a site on a substrate is 
metabolized at a significantly higher rate than that of decoupling then metabolite formation will proceed with 
high efficiency.  Conversely, if the rate of water formation is significantly higher than the rate of metabolism of 
a site then decoupling would dominate and metabolite formation at that site would not be observed.  
Specifically, the lability of site i is given by: 

𝑳𝒊 =
𝒌𝒊

𝒌𝒘𝒂𝒕𝒆𝒓+𝒌𝒊
,  (4) 
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where kwater is the rate of water formation via the decoupling pathway. The value of kwater has previously 
been determined experimentally using an intrinsic isotope effect method [34] [35] for metabolism by CYP3A4 
and therefore the lability values presented herein should be interpreted with reference to this isoform. 

The distribution of the lability of the sites on a compound is conveniently shown on a ‘metabolic landscape’ 
histogram using color as a visual guide, based on the efficiency with which metabolism would occur at that site: 
red for labile (>0.80); yellow for moderately labile (between 0.35 and 0.80); green for moderately stable 
(between 0.05 and 0.35) and blue for stable (<0.05).  Examples of these representations are shown in the 
illustrative applications in Figure 5 through Figure 7. 

The site labilities of individual sites can be combined to calculate the `composite site lability' (CSL) reflecting the 
overall efficiency of product formation for the molecule.  This is calculated from the combined estimated rates 
of metabolism for all sites on the molecule: 

𝑪𝑺𝑳 =
𝒌𝒕𝒐𝒕𝒂𝒍

𝒌𝒕𝒐𝒕𝒂𝒍+𝒌𝒘𝒂𝒕𝒆𝒓
.   (5) 

It should be noted that CSL is not a prediction of rate, but is one important factor influencing the rate amongst 
others, including reductions rates, which are often rate-limiting in the catalytic cycle, and binding affinity, which 
itself can be influenced by substrate properties such as size, liphophilicity and pKa. Therefore, due to the impact 
of changes in these additional, confounding factors between compounds, a direct correlation between small 
changes to CSL and the CYP3A4 half-life or intrinsic clearance is not necessarily expected. 
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Figure 5 Cytochrome P450 metabolism predictions for example compounds from example 1. The sites of metabolism and 
predicted regioselectivity are shown for each compound, along with a metabolic landscape illustrating the lability of each 
site with respect to metabolism by CYP3A4. For each compound the calculated CSL, and experimentally measured half-
life (T½ in minutes) with respect to in vitro metabolism by CYP3A4 and activity (IC50 in nM) against the target 5-HT1A are 
shown. [36] 
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EC50 = 6.2 T½ = 281 
 Figure 6 Cytochrome P450 metabolism predictions for example compounds from example 2. The sites of metabolism and 
predicted regioselectivity are shown for each compound, along with a metabolic landscape illustrating the lability of each 
site with respect to metabolism by CYP3A4. For each compound the calculated CSL, and experimentally measured half-
life (T½ in minutes) in an in vitro human microsomal stability assay and activity (EC50 in nM) against the target HIV-1 
reverse transcriptase are shown. [37]  
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IC50 = 590 Clint = 1000 

16 

  
IC50 = 9.1 Clint = 1000 
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IC50 = 29 Clint = 130 
 Figure 7 Cytochrome P450 metabolism predictions for compounds from example 3. The sites of metabolism and predicted 
regioselectivity are shown for each compound along with a metabolic landscape illustrating the lability of each site with 
respect to metabolism by CYP3A4. For each compound the calculated CSL, and experimentally measured intrinsic 
clearance (Clint in ml/min/kg) in an in vitro human microsomal stability assay and activity (IC50 in nM) against the target 
PDE10A are shown. [38] 
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Results and Discussion 
Predictive Performance 

The results in Table 3 and illustrated in Figure 8 show the predictive performance of the models.  The results 
show the percentage of the independent test sets where a SOM is identified in the top 2 and top 3 predictions, 
and also the percentage where all SOM are identified in the top 3 predictions. 

Table 3 Site of metabolism (SOM) prediction performance for the independent test sets.  Results show the percentage of 
the compounds in the independent test sets where at least one SOM is correctly identified in the top 2 and 3 predictions, 
and the percentage where all SOM are identified in the top 3. The average area under the curve of the ROC plots for 
compounds in the test set is also provided.  SMARTCyp comparisons are shown where isoform specific models are 
available for CYP3A4, CYP2D6 and CYP2C9. 

Isoform StarDrop SMARTCyp 

 Top 2 (%) Top 3 (%) All Top 3 
(%) 

AUC Top 2 (%) Top 3 (%) All Top 3 
(%) 

AUC 

3A4 84.5 90.5 53.6 0.87 70.2 84.5 51.2 0.89 

2D6 91.1 92.9 71.4 0.91 92.9 96.4 69.6 0.95 

2C9 85.7 93.9 75.5 0.91 87.8 91.8 77.6 0.95 

1A2 87.7 89.5 64.9 0.87 N/A N/A N/A N/A 

2C8 81.5 92.6 70.4 0.86 N/A N/A N/A N/A 

2C19 85.7 89.8 69.4 0.89 N/A N/A N/A N/A 

2E1 90.0 93.3 80.0 0.84 N/A N/A N/A N/A 

 

In addition, receiver operating characteristic (ROC) plots have been generated for each compound, as illustrated 
in Figure 9  and the average area under the curve (AUC) for the ROC plots for the compounds in the test set for 
each isoform are also shown in Table 3. A greater area under the curve for a classifier indicates higher 
performance; the maximum possible AUC is 1 and a value of 0.5 is equivalent to the performance of random 
selection. The AUC for each compound and isoform in the training and validation sets is provided in the 
Supplementary Information. 

An alternative measure of performance, Lift, was proposed by Zaretzki et al.. [8] This corrects for the fact that it 
is easier to predict the observed SOM for compounds with a small number of potential sites than for those with 
a large number. The Lift measures the improvement in accuracy above that expected for random selection. Table 
4 shows the Lift achieved by the models described herein. 

Table 4 Lift metric for independent tests sets. Results show the improvement in performance of the models over that 
expected for a random model for top 2 and 3 predictions. SMARTCyp comparisons are shown where isoform specific 
models are available for CYP3A4, CYP2D6 and CYP2C9. 

Isoform StarDrop SMARTCyp 

 Top 2 (%) Top 3 (%) Top 2 (%) Top 3 (%) 

3A4 81 86 67 76 

2D6 90 93 94 96 

2C9 89 92 91 96 

1A2 82 84 N/A N/A 

2C8 78 95 N/A N/A 

2C19 84 87 N/A N/A 

2E1 84 87 N/A N/A 
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Figure 8 SOM prediction performance of the models described herein on independent tests. The bars labelled top-N show 
the percentage of an independent data set where at least one observed site of metabolism is identified in the top-N 
predicted sites. The performance of SMARTCyp on the same sets is shown for comparison for isoforms predicted by 
SMARTCyp. 
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(a) 

 
 

(b) 

Figure 9 Receiver operating characteristic (ROC) plots of the true positive rate (TPR (sensitivity)) against the false positive 
rate (FPR (1 - specificity)) for the prediction of SOM for two compounds. A perfect classifier would be represented by the 
point in the top left and a performance below the identity line (shown in black) indicates worse performance than a 
random classification. A greater area under the curve (AUC) for a classifier indicates higher performance; the maximum 
possible AUC is 1. The corresponding compounds are shown adjacent to each ROC plot, with the predicted regioselectivity 
indicated by the labels for each site. Primary observed sites of metabolism are highlighted on these structures by a solid 
red circle, secondary observed sites by a dashed red circle and tertiary observed sites by a dotted red circle. (a) shows an 
illustrative ROC plot for Ropivacaine which is well, but not perfectly, predicted. (b) shows an example of an ROC plot for 
a poorly predicted compound, in this case 2-oxo-Quazepam. The AUC is provided in the Supplementary Information for 
each compound in the data set. 

 

 

 

AUC = 0.72 

AUC = 0.96 
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Comparative performance statistics are shown for CYP3A4, CYP2D6 and CYP2C9 from SMARTCyp, which predicts 
only these isoforms. Similar performance is obtained for CYP2C9 and CYP2D6 but performance on the important 
CYP3A4 isoform is stronger for the models presented in this paper. 

It is informative to examine the contribution to overall predictive performance from the different components 
of the models: the electronic activation energy, ΔHA, steric hindrance affecting accessibility of each potential 
site of metabolism and interactions affecting the orientation of the substrate within the CYP binding pocket.  The 
bar charts in Figure 10 compare the performance of different combinations of these components and it is 
apparent that contribution of the steric component is typically more important than the orientation component.  
However, the orientation component does have a notable positive influence on the performance of the CYP2D6 
models and is able to capture the important interactions between positively charged ligand moieties and 
negatively charged protein residues (Glu216 and Asp301) that are known to be important for binding. [39] 

 

Figure 10 SOM prediction performance of different combinations of the three components to this method: elec (the 
electronic activation energy ΔHA); steric (the effect of steric hindrance due to the structure of the substrate) and orient 
(the effect of interactions affecting the orientation of the substrate relative to the oxidizing oxy-heme).  The performance 
of electronic activation energy alone is shown in blue, electronic plus orientation in red, electronic plus steric in grey and 
all three contributions in yellow. The bars labelled topN show the percentage of compound in an independent data set 
where at least one observed site of metabolism is correctly identified in the top-N predicted sites. The bars labelled 
AllTop3 show the percentage of compounds where all SOM are identified in the top 3 predicted sites. 
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The steric and orientation descriptors capture the influence of functional groups at different bond path distance 
ranges from a potential site of metabolism, as discussed in the Methods section above. In general, the steric 
descriptors have a greater contribution to Ea than the orientation descriptors, consistent with the results in 
Figure 10 and discussed above. This is especially true close to the potential SOM (less than 6 bonds away) where 
steric bulk has a positive influence on Ea, i.e. tend to reduce the relative rate of metabolism. The exception to 
this is for the descriptors representing SOMs close to planar regions in the CYP2D6 model, where the influence 
is negative, i.e. they tend to increase the relative rate of metabolism. This is consistent with the observation that 
CYP2D6 has a tendency to metabolize sites on planar regions of substrates. 

The orientation descriptors are subdivided into distances to positively and negatively charged functionalities, 
with the positive features generally having greater influence on the Ea than the negative ones. CYPs 1A2 and 
2D6 have a similar pattern of orientation descriptor influences that are distinct from the other CYPs. It is also of 
interest to note that CYP3A4 is not overly influenced by any one set of descriptors, which may be due to its large 
and flexible active site allowing many different sizes and orientations of molecules to be metabolized. 

Example Applications 
We will illustrate the application of the models described above via the following three examples, where 
example outputs are shown in Figure 5 through Figure 7. These outputs are in the form of a labelled 2D 
representation of the molecule, summarizing the predicted regioselectivity of metabolism by CYP3A4 
(regioselectivity predictions for all isoforms for each compound are provided in the Supplementary Information). 

Example 1 - Developing Buspirone analogues with improved metabolic stability 

The feasibility of pursuing a fast-follower for Buspirone, a 5HT1A ligand used as an anti-anxiolytic therapeutic, 
was explored in Tandon et al.. [36]  Buspirone experiences rapid metabolism by CYP3A4 leading to low oral 
bioavailability and a short half-life in humans and this study aimed to identify analogues of Buspirone with 
greater metabolic stability whilst maintaining receptor affinity. The published study was guided by prospective 
application of an earlier version of the models described herein, but here we have repeated the calculations 
with the latest models. 

The structure of Buspirone (see compound 1 in Figure 5) can be broken down into 3 regions: 

 an arylpiperazine which is a protonatable recognition element important for receptor affinity and is 
metabolized via hydroxylation of pyrimidine C5 

 a tetramethylene linker which is metabolized by N-dealkylation alpha to the piperazine N4  

 a piperidinedione which is metabolized via oxidation of the spirocyclopentane ring. 

This study explored structural modifications with a view to improving metabolic stability.  Here we will compare 
the experimentally observed changes in in vitro half-life with respect to metabolism by CYP3A4 to predictions 
from the latest models described in this paper.  The predicted metabolic profile of Buspirone and its analogues 
are shown in Figure 5.  The presence of two labile sites and a high CSL is consistent with the observed short half-
life observed in vitro (4.6 minutes) and rapid metabolism in vivo.  

Blocking the 5 position of the pyrimidine ring (predicted as labile with a regioselectivity of 58%) with fluorine led 
to compound 5, where activity at the target is maintained but the half-life increased to 52 minutes. In this case, 
one region of the molecule was modified but other labile and moderately labile sites remain, so only a small 
change in the overall CSL is observed even though this modification is beneficial.  As noted above, other factors 
also influence the overall rate of metabolism and a direct correlation between the small changes to CSL and the 
CYP3A4 half-life is not necessarily expected.  However, in this case the increase in half-life is reflected by a fall 
in CSL from 0.957 to 0.885. 

An example of the complex relationship between structural changes and metabolic stability is demonstrated by 
molecule 10, which introduced a methyl substituent alpha to the piperazine in an attempt to hinder N-
dealkylation from what is predicted to be a labile site. The models predict a further small decrease in CSL to 
0.8458.  However, the half-life falls to 14.8 minutes, indicating that the factors mentioned earlier are influential 
here.  In this instance, the addition of the methyl group changes the lipophilicity and basicity of the compound 
which are likely to increase the binding affinity to CYP3A4 and hence offset the small decrease in CSL to increase 
the rate of metabolism.   
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Replacing the spirocyclopentane ring with a gem dimethyl to give compound 21 eliminated the predicted 
moderately labile site in the five-membered ring which was reflected by an increase in half-life to 78 minutes. 

Overall, this example illustrates that the models can be used to guide development of a lead compound towards 
greater metabolic stability, where in this example compounds 5 and 21 show half-lives of 52 and 78 minutes 
respectively whilst maintaining activity of 0.2 μM or lower. 

Example 2: Developing HIV-1 reverse transcriptase inhibitors with improved metabolic stability 

A series of N1-heterocyclic pyrimidinediones were investigated by Mitchell et al. [37] for application as HIV-1 
non-nucleoside reverse transcriptase inhibitors (NNRTIs) with the aim of improving the pharmacokinetic profile 
whilst maintaining activity.   

Compound 1, shown in Figure 6, achieved the required target activity but the half-life of 45 minutes in human 
liver microsomes was a long way short of the target for once daily dosing.  The models predicted the terminal 
amine group to be a labile site with the results for compound 1 and its analogues given in Figure 6.  Compound 
1 contains a fluorine substitution ortho to the pyridine N.  Further substitution of the pyridine ring with fluorine 
to give compound 9 did not give a significant improvement in terms of prediction or measured data. 

To significantly improve the half-life for this series it was necessary to address the metabolically labile terminal 
amine.  Replacement with a hydrogen led to compound 13 where the CSL falls to 0.8309, corresponding to a 
large increase in half-life to 281 minutes.  Further substitution of the pyridine to block both aromatic sites ortho 
to the pyridine N with fluorine, to give compound 10, led to a further reduction in the CSL and an increase in 
half-life to in excess of 395 minutes.   

This relatively simple example shows how CYP models can quickly identify labile sites to focus on modifications 
that are likely to improve metabolic stability.  In this case, the replacement of a labile terminal amine and 
blocking aromatic sites with fluorine, as illustrated by compounds 10 and 13, showed improved metabolic 
stability and retained good antiviral potency. 

Example 3:  Novel benzimidazoles as PDE10A inhibitors with improved metabolic stability 

A series of novel benzimidazoles were developed by Chino et al. [38] that show sub-micromolar activity as 
inhibitors of PDE10A, which is hypothesized to be effective in treating schizophrenia and a wide range of 
neurological, psychotic, anxiety and movement disorders by increasing levels of cAMP and cGMP in the brain.    

Compound 1, as shown in Figure 7, was identified from high throughput screening as a low micromolar PDE10A 
inhibitor where introduction of a phenyl ring to the N-1 position on benzimidazole was found to improve 
inhibitory activity.  It was noted that compound 14a with a methyl at the 5-position on benzimidazole and a 
methyl in the 1-prime position of the imidazopyridine was approximately 3 times more active than compound 
1, and removal of the methyl in the 1-prime position removed inhibitory activity, indicating the importance of 
this group (data not shown).  This position is predicted by the CYP models to be metabolically labile, along with 
the 5-methyl on the benzimidazole, with further labile and moderately labile sites in the aromatic positions, as 
shown in Figure 7.  This causes these compounds to have high risk of rapid metabolism by CYPs, as illustrated by 
the CSL values, and borne out in the experimental results with compound 14a exhibiting clearance of greater 
than 1000 mL/min/kg. 

Introduction of another N into the fused ring system to give the imidazopyridazine in compound 16 gave 
improved inhibition but did not improve metabolic stability.  The methyl substituents were shown to be 
important for activity so variations to the heterocycles that preserved these groups were made.  The 
imidazopyridazine was replaced with an azabenzimidazolinone to give compound 10b, a change which gave 
improved metabolic stability, due to the loss of some moderately labile aromatic sites.    

Focus then shifted to the benzimidazole part of the molecule to further improve metabolic stability.  Variation 
of the 5 methyl and insertion of N into the benzimidazole ring system at the 7 position led to compound 24a 
showing improved metabolic stability and reflected by a lower CSL.  Whilst these changes are not directly 
blocking a predicted labile site they do impact on the metabolic stability of sites elsewhere in the molecule and 
show that sometimes subtler longer range effects come into play. 
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This example highlights a situation where the lead series was developed by making larger changes to molecular 
fragments, not simply blocking a labile site, with non-intuitive changes to the metabolic stability.  In this example 
the QM methodology employed by the models was able to capture these trends by considering each fragment 
in its actual environment and would allow a chemist developing a lead series to gain insights into the likely 
impact of even quite large changes to their molecules. 

Conclusions 
This paper has described the prediction of metabolism by Cytochrome P450 based on an understanding of the 
catalytic mechanism of P450 metabolism.  The approach uses semi-empirical QM methods to estimate the 
electronic activation energy, based on a strong foundation of experimental data and ab initio DFT calculations. 
This is coupled with a ligand-based methodology to calculate adjustments for isoform-specific steric and 
orientation effects due to interactions with the binding pockets.  These QM based methods offer generality and 
transferability since they are derived from fundamental physical principles, rather than relying on empirical 
pattern matching with a limited domain of applicability.  A further advantage of a QM method is that each site 
is considered in the context of the molecular environment in which it resides rather than splitting a molecule 
into fragments and treating each as a discrete uniform entity when assessing the likelihood of metabolism.   

The resulting models show excellent performance for the prediction of SOM for seven major human drug 
metabolizing isoforms of CYP: CYP3A4, CYP2D6, CYP2C9, CYP1A2, CYP2C19, CYP2E1 and CYP2C8. 

Furthermore, by calculating an approximation to the activation energy for each potential site of metabolism, the 
lability of each site to metabolism can be estimated on an absolute scale; a unique feature that is beneficial to 
medicinal chemists optimizing candidate drugs to improve metabolic stability.   

Future work in this field will include the coupling of these models with predictions of the CYP isoforms that are 
most likely to be responsible for metabolism of a compound. This will provide a guide to the most relevant 
regioselecticity prediction and aid in the prediction of the metabolite profile resulting from CYP metabolism. 

Experimental 
All results were generated using StarDrop v6.1 [32]. 
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