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Abstract 

In this article we describe a computational method that automatically generates chemically relevant 
compound ideas from an initial molecule, closely integrated with in silico models and a probabilistic scoring 
algorithm to highlight the compound ideas most likely to satisfy a user-defined profile of required properties. 
The new compound ideas are generated using medicinal chemistry ‘transformation rules’ taken from examples 
in the literature. We demonstrate that the set of 206 transformations employed is generally applicable, 
produces a wide range of new compounds and is representative of the types of modifications previously made 
to move from lead-like to drug-like compounds. Furthermore, we show that more than 94% of the compounds 
generated by transformation of typical drug-like molecules are acceptable to experienced medicinal chemists. 
Finally, we illustrate an application of our approach to the lead that ultimately led to the discovery of 
Duloxetine, a marketed serotonin reuptake inhibitor. 
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Introduction 

In silico predictive models of key properties are routinely used in the selection and design of potential drug 
molecules

1
. These results may be combined to prioritize compound ideas for synthesis, simultaneously 

optimizing multiple parameters to identify compounds with an appropriate balance of properties for the 
therapeutic goal of a drug discovery project

2,3
. Furthermore, the structure-activity relationships that these 

models capture can guide the redesign of compounds to improve their properties and overcome liabilities
4
. 

Predictive methods can score and rank compounds to guide the search for high quality compounds among a 
large number of possibilities; therefore, getting the maximum value depends on having a rich set of potential 
compounds to search. However, during optimization it is rare for a large library of relevant, predefined 
structures to be available and it is common to rely on a medicinal chemist to define possible compounds of 
interest, either by drawing individual structures or enumerating virtual libraries based on a common structural 
motif. This is a time consuming process and limited by the experience of an individual chemist. 

Methods for automatically applying medicinal chemistry ‘transformation rules’ to generate new compound 
structures have been previously described

5,6
.  These typically accept an initial ‘parent’ structure as input and 

generate ‘child’ structures by applying transformations based on collective medicinal chemistry experience. 
Examples of transformation rules range from simple substitutions or bioisostere replacements to more 
dramatic modifications of the molecular framework such as ring opening or closing. A computer can store and 
apply many more rules than a single chemist and can ‘learn’ from historical examples of transformations 
between molecules

7
. Applying a set of  transformations iteratively to produce multiple ‘generations’ of 

compound ideas can result in a large number of molecules – too many to be examined visually by a chemist to 
select the most interesting for further consideration. 

In this paper, we describe the combination of an algorithm to generate compound ideas, by applying 
transformations to an initial molecule, with predictive models and a multi-parameter scoring algorithm to 
quickly focus attention on those ideas most likely to satisfy the required property profile. The goal is a tool to 
support experts and stimulate the process of innovation – achieving a creative combination of a computer’s 
ability to cover a wide breadth of possibilities with the experience and detailed knowledge of a chemist. In 
particular, the discovery process should be directed by an expert and provide a prioritized list of possibilities 
for further consideration, not an automatically designed final compound. 

To be successful, such a method must satisfy a number of requirements:  

 It must generate a wide diversity of chemistry, as the objective is to explore many ideas in the search 
for an optimal solution. 

 The compound structures generated must be relevant. In particular, the number of ‘nonsensical’, e.g. 
chemically unstable or infeasible, compounds must be kept to a minimum. Also, the chemist must be 
able to control the generation process, for example by specifying a region that must not be modified 
or restricting the transformations that will be applied. 

 The transformations that are applied should include a broadly representative set of those applied 
successfully in the past to optimize successful drugs. 

 The method used to prioritize the resulting compound ideas should reliably identify high quality 
compounds within those given the highest rank in the generated set. 

The methods used to create and apply a set of transformations and prioritize the compounds generated 
thereby are described in the Methods section. In the Results section, we describe the validation of this method 
to ensure that the transformations cover a broad range of ‘drug like’ chemistry and that the resulting 
structures are relevant and not unstable or infeasible. We will describe the application of our method to 
efficiently identify compounds similar to known drugs, starting from the lead compounds from which the drugs 
were derived. Furthermore, we illustrate the application of the compound idea generation method combined 
with predictive models and a multi-parameter optimization algorithm to the lead of a known drug, Duloxetine. 
Although retrospective, this application will demonstrate the ability to efficiently target high quality 
compounds. Finally, we will discuss possible applications of these methods and draw some conclusions. 
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Methods 

Transformations 

Two hundred and six transformations were generated by study of medicinal chemistry literature
8-24

 and 
observation of the optimization steps between known drugs and the lead molecules from which they were 
derived. 

The transformations were divided into seven broad groups: Functional Group Addition, Linker Modification, 
Remove Atom, Ring Addition, Ring Modification, Ring Removal, Terminal Group Exchange. The distribution of 
transformations between the groups is shown in Table 1 and examples of each are shown in Table 2. 

Table 1 Distribution of transformations between groups. 

Group Number of 
transformations 

Functional Group Addition 20 

Linker Modification 54 

Remove Atom 5 

Ring Addition 13 

Ring Modification 26 

Ring Removal 4 

Terminal Group Exchange 84 

Total 206 

 

The transformations do not necessarily correspond to specific chemical reactions or synthetic routes; rather 
they are intended to describe changes to molecules that a medicinal chemist might consider in the course of 
an optimization project. A single transformation might require multiple synthetic steps or the synthesis of new 
building blocks. However, the transformations are typically not major rearrangements – they are relatively 
feasible moves in chemical space. 

Representation of Transformations 

The compound transformations were encoded as SMIRKS, a reaction transform language designed by Daylight 
Chemical Information Systems which uses SMILES and SMARTS notations to specify a generic reaction or 
transformation

25
. SMIRKS representations of example transformations are provided in Table 2. 

Generation of Compound Structures 

The Cactvs cheminformatics library
26

 was used within the StarDrop software platform
27

 to apply the 
transformations to a parent compound structure encoded as a SMILES string. The Cactvs implementation also 
allows a fragment of the parent to be specified as a SMARTS pattern, such that this fragment will not be 
modified during the generation process and any transformations that would modify this region will be ignored. 

The user can specify the parent structure and control the generation process through a graphical user 
interface. The typical workflow is illustrated in Figure 1: The user can specify a region of the compound that 
must not be modified; the transformations to be applied can be selected; the number of generations of 
transformations to be applied can be specified; and finally, because this process generates a number of 
compounds that grows exponentially with the number of generations, the user can control this growth by 
specifying a criterion to select a subset of the compounds in each generation. The criterion may be defined in 
terms of any predicted property or a score that represents the overall quality with respect to a profile of 
properties (see “Scoring” below) and can be specified as a threshold value for the property, e.g. only accept 
compounds with logS > 1, or the number or proportion of compounds to select from a list ranked by the 
property, e.g. only progress the 100 compounds with the highest predicted potency in a generation or the 
highest scoring 10% of a generation. 
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(a) 

 

(b) 

 

(c) 

Figure 1 Illustration of a workflow to initiate the generation of new compound structures. (a) Specify the input structure. 
A region of the molecule can be chosen to be 'frozen' (shown in light blue), in which case no modifications will be made 
to this region. (b) The transformations to apply can be selected, either individually or as groups. The groups can be 
managed to create groups tailored to specific objectives or to add new transformations. (c) The number of generations 
can be specified and a criterion for selection can be defined to limit the growth of the number of compounds generated. 
The selection can be defined as a minimum threshold for a property or score or a maximum number or percentage of 
each generation that will be used as the basis for subsequent generations. 
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Table 2 Example Transformation Rules. 

Group Transformation 
Name 

Illustration SMIRKS 

Functional 
Group 
Addition 

Methyl addition to 
amine 

 

[N:1][H]>>[N:1]C 

Sulfonamide 
addition to benzene 

 

[c:1]1[c:2][c:3][c:4][c:5][c:6]1[H]>>[c:1]1[c:2][c:3][c:4][c:
5][c:6]1S(N)(=O)=O 

Linker 
Modification 

Secondary carbon 
to carbonyl 

 

[*;!#1:1][CH2][*;!#1:2]>>[*;!#1:1]C(=O)[*;!#1:2] 

Ester to amide 
linker 

 

[#6:1]O[C;!R:3](=O)[#6:2]>>[#6:1]N[C;!R:3](=O)[#6:2] 

Remove 
Atom 

Remove halogen 

 

[C,c:1][F,Cl,Br,I]>>[C,c:1] 

Remove hydroxyl 

 

[C,c:1][OH]>>[C,c:1] 

Ring Addition 

Methyl to phenyl 

 

[*;!#1:1][CH3]>>[*!#1:1]c1ccccc1 

Benzene to indole 

 

[c:1]([H])1[c:2]([H])[a:3][a:4][a:5][a:6]1>>[C:1]12[a:6]=[a
:5][a:4]=[a:3][C:2]=1[nH]C=C2 
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Ring 
Modification 

Phenyl to 3-pyridine 

 

[*;!#1:1][c:2]1[c:3][c:4][c:5][cH][c:6]1>>[*;!#1:1][c:2]1[c:
3][c:4][c:5][n][c:6]1 

 

NC-switch 

 

[*:1]1:[c]([*:2]):[c:10]([*:3]):[n]([*:4]):[*:5]1>>[*:1]1:[n](
[*:2]):[c:10]([*:3]):[c]([*:4 

Ring Removal 

Napthalene to 
benzene 

 

[*;!#1:7][c:1]1[cH]c2c([cH][c:6]1)[c:5][c:4][c:3][c:2]2>>[*
;!#1:7][c:1]1[c:2][c:3][c:4][c:5][c:6]1 

Remove phenyl 

 

[*;!#1:1]c1[cH][cH][cH][cH][cH]1>>[*;!#1:1] 

Terminal 
Group 
Exchange 

Carboxyl to amide 

 

[*;!#1:1][C:2](=O)[OH]>>[*;!#1:1][C:2](=O)N 

Amide to 
sulfonamide 

 

C(=O)([NH2])[*;!#1:1]>>S(=O)(=O)([NH2])[*;!#1:1] 
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Predictive Models 

Any in silico model may be used to predict the properties of the compounds generated. However, due to the large 
number of compounds that may be generated, the models should be capable of generating predictions quickly in 
order to prevent the process from becoming intractable. 

In the example presented in this paper, quantitative structure-activity relationship QSAR models implemented in 
the StarDrop software platform were used

27
 to predict the following ADME and physicochemical properties: 

octanol/water partition coefficient (logP), aqueous solubility (logS), human intestinal absorption (HIA),  blood-brain 
barrier penetration (logBB), inhibition of the potassium ion channel encoded by the human ether-a-go-go related 
gene (hERG pIC50), human plasma protein binding (PPB), inhibition of cytochrome P450 isoforms CYP2D6 and 
CYP2C9 (pKi) and active transport by P-glycoprotein (P-gp). 

In order to identify high quality compounds it is also necessary to predict activity against the pharmacological 
target for the intended drug. In the example application described herein, a QSAR models of the inhibitory 
constant against the serotonin transporter (expressed as the logarithm of the Ki in nM) was generated. The data 
set used to build this model was derived from the publicly accessible ChEMBL database provided by the European 
Bioinformatics Institute

28
. A training set of 1454 compounds was used to build multiple models using a range of 

statistical fitting methods using the StarDrop Auto-Modeller
29

 and the model with the highest coefficient of 
determination (R

2
) on an independent validation set of 311 compounds was selected. The resulting model used a 

Gaussian Processes (GP) method
30

 and 62 descriptors, including logP, McGowan’s volume
31

, topological polar 
surface area

32
 and two-dimensional structural descriptors defined as SMARTS patterns. The final model has an R

2
 

of 0.88 and root mean square error (RMSE) of 0.62 on the training set, an R
2
 of 0.72 and RMSE of 0.85 on the 

validation set and an R
2
 of 0.81 and a root mean square error of 0.76 on a further,  external test set of 311 

compounds. The model also estimates the confidence in each prediction, based on the GP method which relates 
the uncertainty in the prediction for each compound to its proximity to the compounds in the training set. This 
confidence is explicitly taken into account in the scoring method discussed below, so that highly uncertain 
predictions are not given undue weight in the selection of compounds. 

Scoring 

The methods underlying the probabilistic scoring algorithm employed herein are discussed in more detail in 
references

3,4
 but here will give a brief overview. A probabilistic score is one which indicates the probability of 

success of a molecule against a ‘scoring profile’ that defines criteria for the properties that are required in an ideal 
compound. It is also important to specify the relative importance of the criteria as, in practice, it is often necessary 
to make a trade-off between properties if an ideal molecule cannot be identified. Furthermore, more subtle trade-
offs can be defined than simple pass/fail criteria, as a scoring profile could contain more complex functions for 
each property representing a range of acceptability over the property value range.  An example of such a scoring 
profile is shown in Figure 2. 

 

Figure 2 The scoring profile used to prioritise compounds generated from the Duloxetine lead, showing the properties of 
interest, the desired value ranges and the importance of each criterion. For example, the most important property was 
inhibition of the serotonin transporter, for which a predicted Ki of less than 10 nM (log Ki <1) was required. This was 

followed by an aqueous solubility of greater than 10 M (logS > 1) and positive prediction for human intestinal absorption. 
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When combining property data on multiple properties, it is also important to consider the uncertainty in each data 
point, as this could lead to the overall uncertainty in the scores being high, reducing our ability to confidently 
distinguish high and low quality molecules. The result of this process is a score for each molecule, representing the 
likelihood of a molecule meeting the scoring criteria and an uncertainty in the overall score, derived from the 
uncertainties in each of the individual property values. These uncertainties can be used to establish whether the 
available data allow one molecule to be confidently chosen over another. 

Similarity 

Compound similarity was measured using the Tanimoto index calculated between topological path-based 
fingerprints, with a maximum path length of 7 and a fingerprint size of 2048 bits. This was performed using the 
RDKit toolkit

33
. 

Drug Data Set 

The set of 3,211 drug molecules used in the validation of the transformations (the ‘drug set’) was derived as 
follows: Version 2.5 of the DrugBank Small Molecule database

34
 was obtained on August 23, 2010. This initial set 

containing 4854 molecules was reduced by removing molecules containing atoms other than C, H, N, O, P, S, Cl, or 
F, molecules with molecular weight less than 200 Da and 140 molecules which contained poorly specified SMILES 
(127 aromaticity errors and 13 valence errors), resulting in 3214 compounds. Finally, three additional molecules 
(insulin, inulin and DB05413) were removed, as these are very large, not representative of the compounds to 
which we expect this method to be applied and likely to skew the validation statistics due to their size. 40 
compounds were slightly edited to remove small cofactors or counter-ions or to select only one isomer where 
multiple isomers were specified. 

Results 

Transform Set Validation 

Coverage 

In order to ensure that the set of transformations employed covers a wide range of ‘drug-like’ chemistry, enabling 
the exploration of a diverse range of potential modifications, each transformation should apply to a wide range of 
molecules; a transformation that uniquely applies to a single molecule is not of interest. Furthermore, when the 
full set of transformations is applied to a ‘typical’ drug-like parent molecule, a large number of child molecules 
should be generated. 

To test these requirements, the 206 transformations were applied to a set of 3211 drug molecules –  the ‘drug set’ 
described in the Methods section. This resulted in 584,124 child compounds; thus, on average, 182 child 
compounds were generated from each parent. Furthermore, on average, each transformation applied at least 
once to 31% of the molecules in the drug set. 

These statistics indicate that the set of transformations have broad applicability to drug-like compounds and will 
generate a wide range of child compounds. 

Quality 

As discussed above, the transformation rules should be sufficiently general. However, there is a trade-off in that a 
more general transform is more likely to apply in an occasionally inappropriate chemical context. This can generate 
undesirable or infeasible compound structures. The desirability of compound structures is, to some extent, 
subjective. Therefore, the quality of the compound structures generated was assessed by asking two independent 
medicinal chemists to examine a set of 1,500 compounds generated using the 206 transformations. 

The quality assessment set was generated as follows: 400 compounds were randomly selected from the drug set 
described in the Methods section. All of the 206 transformations were applied to the 400 selected molecules to 
generate a set of child compounds. From the full set of child compounds, 1500 were selected at random for 
assessment by the medicinal chemists. 
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The medicinal chemists were asked to assess each child compound to determine whether it was undesirable. They 
were not asked to determine if they could identify a synthetic route to the product – an ideal compound that was 
synthetically challenging may be worth the effort of devising a difficult synthetic route or may spark further ideas 
that are more accessible. 

From the same set of 1500 child compounds, one chemist flagged 7% of the structures as undesirable while the 
other flagged 4.1%. This demonstrates that desirability is, to some extent, subjective. However, an average 
acceptance rate of 94% was considered to be more than sufficient. It would be possible to filter out some of the 
undesirable structures before they are output. However, it was decided to retain this small proportion of poor 
compound structures, though they may be a minor distraction, as they may stimulate ideas for similar compounds 
that are chemically feasible. 

Hit-like to Drug-like Transformation Series 

The transformations in the set should be representative of those used in practice to optimize leads into drug 
molecules. To assess this, a data set containing 60 marketed drugs and the initial leads from which they were 
derived, published by Perola

35
, was used (we will refer to these lead/drug pairs as the ‘Perola set’).

 

For each lead/drug pair in the Perola set, the lead was used as the initial parent and the 206 transformations were 
applied iteratively to explore the ‘universe’ of compounds that are accessible from the lead. The goal of this was to 
identify the closest compound structure in this universe to the corresponding drug. This is challenging, as many of 
the derivations of drugs in the Perola set from their corresponding leads include the exchange or incorporation of 
large or relatively uncommon fragments. A result of the coverage requirements described above is that most of 
the transforms involve smaller fragments. Therefore, many iterative applications of the transformations may be 
required, creating many generations of child compounds, to move from a lead to a compound similar to the 
corresponding drug and, even then, it may not be possible to find an exact match to the drug. 

As the number of compounds generated increases exponentially with the number of generations, it is impractical 
to exhaustively enumerate all offspring compound structures. For example, if 182 compounds are generated on 
average from a single parent, the third generation will contain more than 6 million compounds. Therefore, a 
‘beam’ search was implemented, whereby the 100 compounds with the greatest similarity to the target drug were 
retained after each iteration and a total of five iterations were applied. The closest match, as measured by 
Tanimoto similarity applied to topological finerprints (see Methods Section), to the corresponding drug was 
identified from the resulting child compounds. The disadvantage of this approach is that it does not guarantee to 
find the closest match that could be achieved, as it may be necessary to initially move away from the drug in order 
to ultimately generate the most similar compound. Furthermore, it may be possible to find a closer child 
compound if more than five iterations were applied. 

On average, the similarity of the drug with closest match in the child compounds generated from the 
corresponding lead was 0.86 compared with an average similarity between the drugs and leads of 0.64. Out of the 
60 Perola lead/drug pairs, nine exact matches were achieved within the compounds generated from the initial 
lead. The structures of the initial leads, corresponding drugs and closest identified child compounds are provided 
in the Supporting Information. It should be noted that this is not an external validation of the transformation set, 
as a few known drugs (including some from the Perola set) influenced some of the commonly applied 
transformations. However, this test provides confidence that the transformations chosen in the set of 206 are not 
only generally applicable, but can move from lead-like to drug-like compounds across a wide range of small 
molecule drug classes. 
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Example Application 

To illustrate the application of the transformation set to guide the search for optimized compounds based on an 
initial lead, we used the lead molecule that ultimately gave rise to the drug Duloxetine as the parent molecule. 

QSAR models of absorption, distribution, metabolism and elimination (ADME) properties and the inhibitory 
constant Ki for the serotonin transporter, described in detail in the Methods section, were used to predict the 
properties of the compound ideas generated. These ideas were prioritized against the multi-parameter profile of 
property criteria shown in Figure 2, which combines potency against the primary target with suitable ADME 
properties for an orally dosed compound against a CNS target. To achieve this a score between zero and one was 
calculated for each compound, using a probabilistic scoring method described in the Methods Section. 

The application of one generation of transformations produced 172 child compounds, which suggested that 
exhaustive enumeration of more than two generations would be intractable. Therefore, three generations were 
applied, but only the top-scoring 10% of the compounds in each generation were used as the basis for subsequent 
generations. 

The resulting data set contained 2,208 compounds and the scores for these compounds are plotted in Figure 3. 
From this, a number of observations may be made: First, as the results from multiple uncertain predictions are 
combined to calculate the scores, the uncertainties in the scores are high, as shown by the error bars in Figure 3. 
Therefore, it is difficult to discriminate between compounds with confidence, particularly in the later generations. 
However, despite this, the information provided by the score is sufficient to guide a consistent improvement and 
the compounds in each generation typically show an increase in score over the previous generation; the score for 
the initial lead is 0.09 and the averages for the compounds in subsequent generations are 0.32, 0.44 and 0.53 
respectively (note that only the top 10% of the compounds in each generation are included). Furthermore, the 

score of the top compounds (0.7  0.3) suggest ~95% confidence that they are better than the initial lead (0.1  
0.2), assessed against the criteria defined in the scoring profile. Finally, it is notable that Duloxetine itself is present 

in the final generation, with a score (0.5  0.3) that is higher than the initial lead with ~90% confidence and not 
significantly below that of the highest scoring compounds. 

The structures and scores of the initial lead and Duloxetine are shown in Figure 4 along with the three highest 
ranking molecules generated. Although none of the top-three compounds could be identified in a search of 
PubChem

36
, the second-ranked compound bears a strong similarity (Tanimoto similarity >0.9) to Litoxetine, shown 

in Figure 4, which was progressed to clinical trials and is active against the serotonin transporter with an IC50 of 6 
nM

37
. 

It is notable that the third-ranked compound in Figure 4 is likely to be an alkylating agent. This illustrates that, 
while we have tried to minimize the number of ‘nonsensical’ compounds generated by the transformations, some 
compounds may be generated with undesirable functionalities and we will discuss this further in the conclusions 
below. 

A ‘chemical space’ visualization, illustrating the diversity of the compounds in the generated data set, is shown in 
Figure 5. This plot was generated by generating the full similarity space for the set of 2208 compounds, using 2D 
path-based fingerprints and a Tanimoto similarity index and plotting the first two principal components. From this 
it is notable that a wide range of different chemical motifs have been explored and that there are multiple ‘hot 
spots’ containing high-scoring compounds; the best scoring compounds are not concentrated in one region, 
indicating that the algorithm has identified a number of different chemical strategies worthy of further 
consideration. The top three ranked molecules are structurally diverse, within the range of diversity explored 
around the initial lead, and are distinct from both the initial lead and Duloxetine itself. 
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Figure 3 This graph shows the 2208 compounds generated by three generations of transformations starting with the lead 
compound for the project that yielded the drug Duloxetine. The compounds generated are ordered along the x-axis accoring 
to their score from highest to lowest and the score for each compound, as calculated using the probabilistic scoring 
algorithm, is plotted on the y-axis. Error bars show the uncertainty of the overall score for each compound due to the 
uncertainties in the underlying predictions. The compounds are coloured by generation: Red is the parent, yellow generation 
1, light blue generation 2 and dark blue generation 3. The drug Duloxetine was present in generation 3 and is shown by the 
green diamond. 

In this example, the increase in score is driven primarily by the improvements in predicted target affinity between 
generations because the predicted ADME properties of the lead compound were good to begin with. However, the 
use of probabilistic scoring to select compounds with a good balance of properties was valuable as it eliminated 
compounds in early generations that were predicted to have high target affinity but were unlikely to have a good 
balance of ADME properties for the overall objective. Figure 6 shows the distribution of the scores for compounds 
in the first two generation with predicted Ki less than 10 nM, indicating that a significant number of compounds 
that were predicted to be active were rejected due to the predictions of poor values of other properties including 
solubility (184 compounds from generation 2 were used as the progenitors of generation 3). 
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Rank 1 

 

Litoxetine 

Rank 2 

  

Rank 3 

 

 

Duloxetine 

 

 

Initial lead 

 

 

Figure 4 On the left, the initial lead that ultimately gave rise to Duloxetine, the top three compounds generated from this 
lead and Duloxetine, which was also generated by the algorithm are shown. The score for each compound is show to the 
right along with a histogram indicating the contribution of each property to the overall score (the color of each bar 
corresponds to the property key shown in Figure 2). For comparison with the second-ranked compound, the structure and 
calculated score for Litoxetine a clinical candidate serotonin reuptake inhibitor is shown on the right. Although this structure 
was not generated automatically in this example, it bears a strong similariy (Tanimoto similarity >0.9) with the second-
ranked compound, which has a higher predicted affinity and hence a higher score. 

Discussion and Conclusions 

In this paper we have described an algorithm for automatically generating new compound ideas from an initial 
molecule using a set of medicinal chemistry transformations derived from the literature. We have shown that 
these transformations are generally applicable and generate structures that are relevant and acceptable to 
medicinal chemists. Furthermore, we have demonstrated the use of this chemical transformation algorithm 
coupled with predictive models and a multi-parameter optimisation method, integrated in an intuitive visual 
environment, to stimulate the exploration of a wide range of strategies to identify compounds with a good balance 
of properties and hence a high chance of downstream success. 

While we use a systematic search method as the basis for making chemical modifications, other approaches based 
on evolutionary algorithms have also been applied

38,39
 . Motivated by the theory of evolution, EA-based methods 

‘mutate’ the structure of a compound by making small modifications to a compound structure, for example adding 
or removing a single atom, changing the bond order or changing a carbon atom into a heteroatom. The equivalent 
of genetic ‘crossover’ can also be implemented by combining substructures from two different compounds. This 
evolutionary process is guided by a ‘fitness function’ that may be defined in terms of simple descriptors, predicted 
properties or even by user selection

40
. The application of a transformation rule in our approach is analogous to a 

mutation; however the structural changes corresponding to medicinal chemistry transformations are typically 
larger than an EA mutation. Similarly, the role of a fitness function to guide the optimization in an EA is fulfilled by 
the probabilistic score in our approach. One advantage of a medicinal chemistry transformation-based approach is 
that the structures generated tend to be more relevant, due to the fact that the transformations are based on 
historical precedents; however, the diversity of chemistry that can be explored may be more limited than an EA 
approach, as it is restricted by the library of transformations applied. 
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Figure 5 The chemical space of compounds generated from the initial lead that gave rise to Duloxetine. The points 
corresponding to compounds are coloured by score, from the lowest (0.29) in red to the highest (0.69) in yellow. The initial 
lead is shown as a dark blue diamond, Duloxetine as a green diamond. The top-three scoring compounds are shown as 
purple diamonds. In this plot, each point represents a compound and the distance between two points indicates their 
structural similarity; close points are structurally similar while distant points are structurally diverse. The method by which 
this plot was generated is described in the text. 

 

Figure 6 Score distribution for the compounds in generations 1 and 2 from the Duloxetine lead compound with a predicted K i 
of less than 10 nM. From this we can see that there are a significant number of compounds with poor scores, despite having 
high target affinity, indicating that they are likely to have poor values for other relevant properties. 
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The most significant limitation of the method we have described is that, while we have shown that the large 
majority of the chemical structures generated are relevant and not infeasible, there is no guarantee that they can 
be easily synthesized from available reagents. Computational methods have been proposed for estimating 
synthetic tractability

41
 and including such an estimate as an additional parameter in the multi-parameter 

optimization profile would be one approach to address this. 

In the application to the Duloxetine lead, we noted an example of a compound generated with an undesirable, 
alkylating functionality. This is due to the fact that a transformation set should have a balance between generality 
and the relevance of the compounds generated; attempting to restrict the transformations to eliminate all 
undesirable functionalities would severely limit the diversity of chemistry that could be explored. Furthermore, a 
compound with an undesirable functionality may provide the seed for a valuable idea through a simple 
modification. However, a set of substructural alerts (e.g. 

42,43
) could be applied to flag compounds that contain 

undesirable functionalities, either as a post-hoc filter or as a criterion in the scoring profile to de-prioritize the 
selection of compounds are flagged during the generation process. 

Herein, we employed a two-dimensional QSAR model for prediction of potency against the therapeutic target. 
There are many other approaches for prediction of potency that take into account 3-dimensional information, such 
as pharmacophore, docking or shape-based methods. It should be noted that any method may be used to predict 
the properties used to calculate the probabilistic score used to guide the selection of compounds between 
generations and three-dimensional methods would provide a good approach to eliminate compounds that do not 
fit the active site of the target. 

Another potential extension would be to explicitly consider diversity in the selection of compounds between 
generations. In the example application described herein, only the top scoring compounds were selected as the 
basis for subsequent generations. There is a risk that such a search strategy could quickly focus on a set of very 
similar compounds, although as we demonstrated this did not occur in this case. To mitigate this risk, a selection 
could be made based on a balance of score and structural diversity

44,3
 which would select some lower-scoring 

compounds where these would add significantly to the diversity of the compounds selected and would prevent the 
exploration from becoming trapped in a local maximum. The degree of bias between score and diversity could be a 
user-controlled parameter. 

There are a wide range of potential applications of this technology. These include: aiding the rigorous exploration 
of chemistry around early hits, to identify those hits most likely to yield high quality lead series; helping to find 
strategies to overcome problems with compound properties in lead optimisation; and identifying patent busting 
opportunities by expanding the chemistry around existing development candidates or drugs to search for 
compounds with improved properties. 

Finally, while we have focused on the creation and validation of an initial set of transformations, it is possible to 
extend this set with new transformations based on the experience of medicinal chemists or designed around 
specific chemistry available within an organization. Furthermore, it may be beneficial to organise transformations 
into groups, perhaps tailored to specific objectives such as improving metabolic stability or reducing plasma 
protein binding. Thus, this approach could be used as a tool to capture and share knowledge between medicinal 
chemists or even as an educational resource for less experienced scientists. 
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