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Abstract

In this article we extend the application of Gaussian Processes technique to classifica-
tion problems. We explore two approaches, an intrinsic Gaussian Processes classification
technique and a probit treatment of the Gaussian Processes regression method. Here
we describe the basic concepts of the methods and apply these techniques to building
category models of blood-brain barrier penetration and hERG inhibition. We also com-
pare performance of Gaussian Processes for classification to other known computational
methods, namely decision trees, bagging and probit PLS.

1 INTRODUCTION

Quantitative structure activity relationship (QSAR) models can be broadly separated into two
types. Regression models predict a numerical value of a property based on the structure of a
molecule; classification models predict if a molecule will fall into a property class (e.g. whether
high or low) sometimes with an associated probability of class membership. In general it
would be preferable to predict a numerical value for a property, as this enables selection of
molecules based on an arbitrary criterion. However, it often proves to be impossible to build a
regression model of acceptably high accuracy. This may be due to variability in the underlying
experimental measurements, sparsity of available data or lack of descriptors with sufficiently
high correlation with the observed property. In these cases, a high quality classification model
can often be built which provides discrimination between molecules, at least between broad
classes.

Techniques for building regression models based on the Gaussian Processes (GP) method
have previously been published by the authors1 and other groups.2,3 We have applied this
method to build models of various ADME properties: hERG inhibition, blood-brain barrier
(BBB) penetration, solubility at pH 7.4 and intrinsic aqueous solubility.1,4

In this paper, we extend the application of Gaussian Processes to the generation of classifi-
cation models. Two methods will be explored, an intrinsic GP classification technique and an
approach using GP regression techniques, combined with a probit analysis. We will describe
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the underlying theory and compare the performance of these two methods with other classifi-
cation techniques using two example data sets, a blood-brain barrier classification previously
published by Zhao et al.5 and hERG inhibition. A different approach for classification using
Gaussian Processes was recently used by Schwaighofer et al. to model metabolic stability.6

The underlying theory and resulting equations for the GP classification methods, an outline
of the other common methods applied for comparison, the details of the data and the metrics
used to assess the quality of the models are described in Section 2. Section 3 details results for
the two example data sets and compares the GP methods with other methods. Finally, Section
4 summarizes the results of this study and draws some conclusions.

2 METHODS AND DATA

2.1 Gaussian Processes Binary Classifier

Here we will briefly describe the underlying method for generating classification models using
GPs and give the final formulae to enable the reader to implement this technique. For detailed
discussions and derivation of the formulae we refer the reader to the recent book by Rasmussen
and Williams7 and the work of Gibbs and Mackay.8

The classification problem may be defined as follows. Let X = {x(n)}N

n=1 be the matrix of

molecular descriptors for the molecules in the training set, where x(n) = {x
(n)
i }K

i=1 is the vector
of descriptors associated with molecule n. Let Y = {Y (n)}N

n=1 be the corresponding vector of
class labels (−1 or +1) for molecules in the training set. Here N is the number of compounds
in the training set and K is the number of descriptors. We wish to model the probability
distribution of the class label y for a molecule given its descriptor vector x, p(y|x).

2.1.1 Theoretical Foundation

To apply GPs to a classification problem we need to identify a variable which can be assigned
a GP prior. The class labels are not suitable for this purpose, therefore we introduce a latent
function f(x) to which we can assign a GP prior and use a regression treatment to model f(x).
This function then can be “squashed” by passing it through the logistic response function

g(f) =
1

1 + exp(−f)
(1)

to obtain the class probability:

p(y = +1|x) = g(f(x)) =
1

1 + exp(−f(x))
. (2)

This is illustrated in Figure 1 for a one-dimensional input space. It should be noted that the
latent function f(x) will never be directly observed, it will ultimately be integrated out.

The latent function f(x) follows a GP described by covariance function C(x(n),x(m)). In
this work we have used a squared exponential covariance function.

The inference steps can be briefly described as follows. First, we obtain the posterior
distribution for the latent function value f ⋆ at a new point x⋆, given all of the training data

p(f ⋆|X,Y,x⋆) =
∫

p(f ⋆|X,x⋆, f) p(f |X,Y) df , (3)
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Figure 1: Graphical illustration to Gaussian Processes classification for the case of a one-
dimensional descriptor space. Graph (a) shows a latent function drawn from a Gaussian Process.
Graph (b) shows the result of “squashing” this function through the logistic response function
(eq 1) to obtain the class membership probability.

where the posterior over the latent variables can be obtained by Bayes’ rule

p(f |X,Y) =
p(Y|f) p(f |X)

p(Y|X)
. (4)

Next we use the posterior distribution for f ⋆ (eq 3) and integrate over the logistic response
function (eq 2) to obtain the probability of class membership:

p(y = +1|x⋆) =
∫

g(f ⋆)p(f ⋆|X,Y,x⋆) df⋆. (5)

In the case of a regression problem, all distributions are Gaussian and all integrals can be
treated analytically. This is not the case for a classification problem; the likelihood in eq 3 is
non-Gaussian and that makes the integral analytically intractable. Therefore, approximation
methods for integrals must be used. Two such methods are described by Rasmussen and
Williams7 and one of these approaches, the method of ‘expectation propagation’ was used by
Schwaighofer et al. in modeling metabolic stability.6 In this work we have used the method of
variational lower and upper bounds suggested by Gibbs and Mackay.8 They obtain upper and
lower bounds for the unnormalized posterior density p(Y|f) p(f) (see eq 4). These bounds are
parameterized by variational parameters which are optimized to achieve the tightest possible
fit. The bounds can then be used to derive approximations for the posterior distribution of f ⋆

(eq 3) and for the class probability (eq 5).

2.1.2 Final Formulae

For the sake of computational efficiency, we have used only the lower bound approximation in
our implementation. The final formulae are summarized below. The details of the derivation
of the formulae can be found in Gibbs and Mackay.8

As a covariance function (to impose a prior on latent variables) we have used a squared
exponential covariance function:

C(x(n),x(m)) = θ1 exp

[

−
1

2

K
∑

i=1

(

x
(n)
i − x

(m)
i

)2
/r2

i

]

+ θ2 + εδnm, (6)
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where θ1, θ2 and {ri}
K

i=1 are hyperparameters. We assume the latent variables to be noise free,
but to make the matrix computations well-conditioned we added the term εδnm, where δnm = 1
if n = m, and δnm = 0 otherwise, and ε is a small number (for example, ε = 0.1).

The lower bound approximation for the posterior distribution f ⋆ for a new point x⋆ is a
Gaussian distribution with mean a and variance σ2;

a =
1

2
kTH−1Y (7)

σ2 = C(x⋆,x⋆) − 2kTH−1Λk, (8)

where the vector k with components kn = C(x⋆,x(n)) describes the similarity of the new
molecule to the ones in the training set, C is the covariance function (eq 6),

H = I + 2ΛC, (9)

and C is the covariance matrix. Λ is a diagonal matrix depending on variational parameters
νn (n = 1 . . . N), its elements are defined in the following way:

Λnn =
g(νn) − 0.5

2νn

, (10)

where g(ν) is the sigmoid function from eq 1.
This approximation to the posterior distribution for latent variable f ⋆ and eq 5 are then

used to derive the probability of a new compound x⋆ belonging to class +1:

p(y = +1|x⋆) = g
(

a/
√

1 + πσ2/8
)

. (11)

A compound is assigned to the class with the highest probability. As this is a binary
classification problem, this is equivalent to a probability threshold of 0.5.

2.1.3 Optimization of Hyperparameters and Variational Parameters

Learning a GP classifier means finding hyperparameters θ1, θ2 and ri (i = 1 . . . K) and varia-
tional parameters νn (n = 1 . . . N). The variational parameters are optimized to ensure that
the lower bound on P (Y|X, Θ) is as tight bound as possible. The hyperparameters of the
covariance function should be set to their most probable values given the data. This can be
achieved by optimizing a normalizing constant in eq 4.

In summary, the optimal values of hyperparameters and variational parameters can be found
by maximizing the following function:

log Z =
∑

n

G(νn) +
1

8
YTCH−1Y −

1

2
log det(I + 2ΛC), (12)

where
G(νn) = log(g(νn)) + 0.5νn(g(νn) − 1.5). (13)

We have used the conjugate gradient method with the Polak-Ribiere formula9 to optimize
the function log Z (eq 12).
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2.2 Probit Gaussian Processes

In the previous section we described an intrinsic binary classification technique. However, we
can also use GP regression to directly build a continuous model of the property class variable
and then apply a probit transformation to predictions to assign new molecules to a class. This
idea is similar to the approach in Section 2.1 where we applied a logistic transformation to
the latent function to obtain class membership probabilities (eqs 1, 2). We have described GP
regression techniques in our previous work.1,4

The details are as follows. A GP model is built of the class labels Y which each take values
−1 or +1 (any numerical values could be used in principle, for example 0/1). Let us denote the
model prediction for a new point x⋆ by a⋆ and the standard deviation in the prediction by σ⋆.
For GP models this uncertainty is calculated by the model and is individual to each molecule.

In the most simple case, ignoring uncertainty in prediction, the class membership can be
assigned by applying a threshold to the predictions. In the case of −1, +1 labels it is appropriate
to take t = 0 as a threshold.

The class probability can be calculated as

p(y = +1|x⋆) = 1 − Φ(t, a⋆, σ⋆), (14)

where Φ(t,m, σ) is the cumulative distribution function at t of the normal distribution with
mean m and standard deviation σ. In this case making a prediction is equivalent to using a
threshold of 0.5 on probability to assign a class. Here instead of using the logistic transformation
function (eq 1) we use the probit transformation, the cumulative distribution function for
normal distribution.

2.3 Other Classification Techniques

We will compare performance of the GP classifier and probit models with other modeling
methods, namely decision trees (DT), bagging and a probit treatment of a PLS model.

2.3.1 Decision Trees

The DT technique applies a recursive partitioning approach to building classification models.
Here we used the DT technique implemented within StarDrop’s Auto-Modeller software,10

which is based on the C4.5 algorithm introduced by Quinlan.11 Models built using the DT
method are easy to interpret but often have low predictive ability. This drawback can be
overcome by the tree ensemble techniques, one example of which is given in Section 2.3.2.

The DT method can estimate probabilities of belonging to a class based on the Laplace
ratio11 obtained using the results from the training and test sets. The probabilities are deter-
mined for each leaf of the decision tree and so all compounds in a leaf will be assigned the same
probabilities.

2.3.2 Bagging

In this work we used the simplest tree ensemble method, bagging,12,13 where an ensemble
is created by training multiple trees on different subsets of original data. To create subsets
molecules from the training set are sampled with replacement, a sampling technique called
‘bootstrapping’. Classifications of new molecules are assigned by majority voting across the
ensemble. The probability of a molecule belonging to a class is determined by the frequency of
prediction across the ensemble (i.e. it is equal to the number of trees predicting the molecule
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in that class divided by the total number of trees). In a two-class problem this is equivalent to
using a probability threshold of 0.5 to assign a molecule to a class. We have used an ensemble
of 100 trees in the models generated in this study.

Bagging is a special case of the random forest technique in which each tree is built using a
random subset of descriptors.

2.3.3 Probit PLS Model

The probit treatment which we described in Section 2.2 can be applied to a model produced
by any regression technique. For comparison, in this study we also use the Partial Least
Square (PLS) method14 to build continuous models and apply a probit treatment to produce
classifications.

PLS does not provide an estimate of the uncertainty σ⋆ in prediction, which we need to
be able to calculate class probability p(y = +1|x⋆) (eq 14). Therefore, for a PLS model, the
uncertainties are calculated from the actual RMSE on the independent test sets, taking into
account whether a new compound lies in the chemical space of the model or outside. The
chemical space is determined using a Hotelling’s T 2 test in the space of model descriptors. In
this case, the uncertainty estimates are not individual for each compound, but one value is
assigned to all compounds which lie within the chemical space and a higher uncertainty to
compounds outside of the chemical space.

We use the PLS implementation available in StarDrop’s Auto-Modeller.10 Together with
each prediction, models built by the Auto-Modeller produce an uncertainty in prediction, stan-
dard deviation σ⋆, as described above.

2.4 Data Sets

To make a comparison between GPs for classification and other classification techniques we
have chosen two data sets; a BBB dataset previously published and modeled by Zhao et al.5

and a hERG inhibition data set compiled in house and derived from various literature sources.

2.4.1 Blood–Brain Barrier Data Set (BBB)

This data set contains 1593 compounds; 1283 BBB+ compounds (penetrating blood-brain
barrier) and 310 BBB- compounds (little ability to penetrate blood-brain barrier).5 The data
set is originally based on that published by Adenot and Lahana.15 Classification of BBB+
compounds was assigned on the basis of their central nervous system (CNS) activity. Identifying
BBB- compounds is more complicated and we refer to Adenot and Lahana15 for a detailed
account of the criteria used.

Zhao et al.5 have modeled this data set using 19 simple molecular descriptors which mostly
relate to hydrogen-bonding properties of molecules. These include Abraham descriptors, PSA,
logP, logD, pK a for acid and base, numbers of rotatable bonds and hydrogen bonding donors and
acceptors. They also built models using fragmentation schemes. The computational techniques
Zhao et al. used to build models included recursive partitioning and binomial-PLS methods.

Zhao et al.5 made the data set split available along with the split into training and test
sets and the 19 calculated molecular descriptors. To facilitate comparison, we have used the
same split and descriptors, although we excluded two duplicate compounds. The final data
set we used for modeling contains 1591 compounds (1092 compounds in the training set and
499 compounds in the test set) and 18 descriptors, since one descriptor was excluded as highly
correlated during the descriptor filtering stage (see Section 2.4.2).
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2.4.2 hERG Inhibition Data Set (hERG)

Data on hERG (human ether-a-go-go-related gene) potassium channel blockers were derived
from various literature sources. A total of 168 compounds with patch-clamp pIC50 values for
inhibition of the hERG channel expressed in mammalian cells were selected. This data set
is an extension of the set we have modeled in the previous work.1 Here we used a threshold
of pIC50 = 5 (IC50 = 10 µM) to classify compounds into two classes, i.e. compounds with
pIC50 ≤ 5 are considered inactive (class ’-’) and compounds with pIC50 > 5 are active (class
’+’). The final data set contains 117 active compounds (’+’) and 51 inactive compounds (’-’).
The data set and references to literature sources are provided in the Supporting Information.

To generate descriptors and prepare the hERG set for modeling we used the automatic
modeling procedure from StarDrop’s Auto-Modeller which is described in detail in our previous
work.4

In summary, 2D SMARTS based descriptors, which are counts of atom type and function-
alities, and whole molecule properties such as logP, molecular weight, and polar surface area
(a total of 330 descriptors) were calculated.

The initial data set was split into training and test sets containing 70% and 30% of the data
respectively. The split of the initial data set into subsets was performed by cluster analysis based
on 2D path-based chemical fingerprints and the Tanimoto similarity index. Compounds were
clustered using an unsupervised non-hierarchical clustering algorithm developed by Butina.16

Clusters were defined using a Tanimoto similarity index of 0.7. Once the clusters were formed,
the cluster centroids and singletons were assigned to the training set. Other cluster members
were assigned randomly to the training set until the correct number of compounds were assigned
to the training set. The remaining compounds were assigned to the test set.

The calculated descriptors were subjected to a descriptor pre-selection step that removed
descriptors with low variance and low occurrence. Specifically, descriptors with a standard
deviation less than 0.0005 and descriptors represented by less than 4% of the compounds in the
training set were excluded. Also, highly correlated descriptors are excluded (when the pairwise
correlation exceeds 0.95 in the training set), such that just one of the pair remains.

The final hERG set used in modeling contains 157 descriptors.

2.5 Evaluation of Model Performance

To measure the performance of classification models we use the kappa statistic as well as the
overall accuracy and accuracies for individual classes. The kappa statistic assesses the model’s
improvement in prediction over chance and measures the agreement between observed and
predicted classification.

Let us assume that the confusion matrix for a binary model has the following form:

Predicted

Observed
Class -1 Class 1

Class -1 TN FP
Class 1 FN TP

(15)

Here TP stands for true positives, TN for true negatives, FP for false positives and FN for
false negatives. In this case, the kappa-statistic is defined as follows:

κ =
TN + TP − η

N − η
, (16)
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where η = [(TN + FN)(TN + FP ) + (TP + FP )(TP + FN)]/N is the agreement expected by
chance.

A kappa statistic exceeding 0.8 would mean very good agreement and 0.6 ≤ κ < 0.8 indicates
a good agreement between predicted and observed classification.

We will also evaluate model performance using the area under the receiver operating char-
acteristic (ROC) curve, designated as AUC.

3 RESULTS

3.1 Blood-Brain Barrier Penetration

The results of modeling the BBB data set are summarized in Table 1. For comparison we
have also included the reported performance statistics for the models published by Zhao et al.5

They have developed a variety of models using different subsets of descriptors and different
modeling techniques. The models’ accuracy in predicting BBB- compounds ranged from 65%
to 88% on the test set, with overall accuracies from 97% to 100%. We have included their best
models generated by the binomial PLS method and recursive partitioning (RP) using subsets
of 19 simple descriptors and their best reported model built using a fragmentation scheme
descriptors.

Table 1: Blood-Brain Barrier Penetration: Comparison of Classification Models
accuracy (%) traina accuracy (%) testb test test

method desc. + - overall + - overall κ AUC
Zhao et al. models5

Binomial PLS 5 95 82 92 98 80 97 na na
RP 5 93 85 91 98 78 96 na na
Fragments (binPLS)c 69 98 94 97 98 88 97 na na

This work classification techniques, Zhao descriptors
DT 10 99 86 96 100 78 98 0.85 0.88
Bagging 18 99 88 97 100 78 98 0.85 0.96
GP classifier 18 99 80 94 100 73 97 0.81 0.90
probit-GP 18 99 78 94 100 76 97 0.84 0.92
probit-PLS 18 99 75 93 100 76 97 0.84 0.89

a Training set 1092 compounds.
b Test set 499 compounds.
c This model is using different descriptors from the other models.

The data set contains a larger proportion of BBB+ compounds than BBB- compounds.
Therefore, we would expect it to be much more difficult to accurately predict BBB- compounds
and therefore the accuracy in predicting BBB- is the most important statistical measure for
this set (this is also reflected in the κ statistic).

Overall, all of the models are good and compare well to models produced by Zhao et al.
The best models in this study were produced by the Bagging and DT methods, which achieve
78% accuracy in BBB- class. Although they are not the best models, the GP classifier and
the GP probit model are comparable in performance to other models using these descriptors.
For comparison, the best Zhao et al. model using the same set of descriptors achieved 80%
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accuracy in predicting BBB-, and the best model using fragmentation schemes achieved 88%
accuracy in BBB-.

Another important performance measure to look at is the area under the ROC curve (AUC)
(the last column in Table 1) and also the shape of the ROC curve. Figure 2 shows ROC curves
on the test set for five models developed in this work. The Bagging model produced the
best curve and the DT model has the worst ROC curve, despite having performance statistics
equal to the Bagging model. All the techniques used in this work provide fully probabilistic
output apart from the decision trees technique. The DT technique also provides probabilities
of belonging to a class based on Laplace ratio,11 but it is not appropriate in this case to change
the probability threshold to assign class membership (as done when constructing ROC curves).
Therefore, the DT model is actually represented by a point and not a curve. If for other models
we would ignore the probabilistic output and use just the class membership information for
ROC curves, the classifiers would be represented by single points, as for the DT model.
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Figure 2: ROC curves for predictions of BBB+/- on the test set for five different models.

Table 2: Evaluation of Performance of BBB Models on ’Confident’ Compounds From the Test
Seta

method number of accuracy in κ improved?
compounds BBB- (%)

DT 479 69 0.79 no
Bagging 493 82 0.89 yes
GP classifier 489 76 0.84 yes
probit-GP 479 74 0.84 no
probit-PLS 476 65 0.77 no

a Test set contains 499 compounds.

In addition to achieving a high accuracy of prediction, a good classifier should provide
an estimate of confidence in that prediction, i.e. a probability of belonging to the predicted
class. The GP classifier, Bagging and probit models provide an individual probability for each
compound. The probabilistic output of DT models is much less sophisticated and accurate
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than the other techniques used in this work, as reflected in the ROC curve for the DT model
(see Figure 2) and smallest AUC (0.88).

For each model we have considered compounds from the test set which were ’confidently’
predicted, that is they have predicted probability for the assigned class in the interval [0, 0.25]
or [0.75, 1]. We expect that performance of the model on such a subset should be better
than on all the data. The results are summarized in Table 2. Comparing the κ statistic and
accuracy for BBB- compounds evaluated on all the test set data (from Table 1) to statistics
on ’confident’ compounds we can see that only the Bagging and GP classifier models have
improved performance.

3.1.1 Comparison with Existing BBB Models

In recent years there have been a variety of publications describing predictive models for blood-
brain barrier penetration. They used a variety of different descriptors and computational
approaches. Some concentrated on continuous modeling of the logarithm of the brain:blood
partition coefficient (logBB), others on classification models predicting BBB+/-. It is beyond
of the scope of this paper to provide a comprehensive review of work on classifying BBB pene-
tration, but we refer to a recent review by Clark,17 and the works of Li et al.,18 Zhao et al.5 and
Kortagere et al.19 In general, the accuracy in predicting penetrating BBB compounds exceeds
the accuracy in predicting non-penetrating compounds. Overall, the accuracy in predicting
BBB- ranges from 61% to 87% and the accuracy in predicting BBB+ ranges from 79% to 99%
and therefore these models are broadly comparable to those in this study.

3.2 Modeling hERG Inhibition

The results of modeling the hERG data set are summarized in Table 3. Again, as in the case
of the BBB set, the initial hERG data set contains a larger proportion of active compounds
than inactive. Therefore, the predictions for active compounds are expected to be less accurate
than for active compounds. The best model was produced by the GP classifier, which achieved
a 65% accuracy in the inactive class and κ = 0.66. The κ-statistic indicates that this model
achieved good agreement between predicted and observed values. The performance of other
models is worse than of GP-classifier judging by the κ-statistic.

Table 3: Modeling hERG Inhibition: Comparison of Classification Models
training seta test setb

accuracy (%) accuracy (%)
method desc. inactive active all κ inactive active all κ AUC
DT 7 82 98 93 0.82 65 91 82 0.58 0.78
Bagging 157 100 100 100 1.00 59 97 84 0.61 0.85
GP classifier 157 82 96 92 0.81 65 97 86 0.66 0.84
probit-GP 157 71 99 91 0.75 53 100 84 0.60 0.85
probit-PLS 157 44 95 81 0.45 41 97 78 0.43 0.79

a Training set 118 compounds.
b Test set 50 compounds.

Figure 3 shows ROC curves constructed on the hERG test set compounds for the five
models. The Bagging model and probit-GP model have the best curves and the DT model has
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the worst ROC curve. As we discussed in Section 3.1, this is a reflection of drawbacks of the
probabilistic output of DT technique.

To evaluate whether the predicted probabilities provide good estimates of the confidence
in prediction for the hERG inhibition models we performed the same analysis as in Section
3.1. The performance statistics were calculated only for ’confident’ compounds from the test
set for each model. As before, we have considered a compound as ’confident’ if the predicted
probability for the assigned class lies in interval [0, 0.25] or [0.75, 1]. The results are summarized
in Table 4. Comparing Tables 3 and 4 one can see that Bagging, probit-GP and probit-PLS
models have improved performance for ‘confident’ predictions. However, despite the improve-
ment, the probit-PLS model is still not a very good model. GP classifier performance remained
unchanged when considering only ‘confident’ predictions. Interestingly, the performance of the
DT model on ‘confident’ predictions is significantly worse than the overall performance on all
compounds in the test set, indicating that the assignment of confidence by this method has
little meaning in this case.
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Figure 3: ROC curves for predictions of hERG inhibition on the test set for five different
models.

Table 4: Evaluation of Performance of hERG Models on ’Confident’ Compounds from the Test
Seta

method number accuracy for κ improved?
of cpds inactives (%)

DT 37 14 0.21 no
Bagging 36 63 0.72 yes
GP classifier 42 64 0.66 no
probit-GP 36 60 0.68 yes
probit-PLS 32 50 0.60 yes

a Test set contains 50 compounds.
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3.2.1 Comparison with Published hERG Models

A good summary of published classification QSAR models for hERG inhibition is provided
by Thai and Ecker.20 Different values of IC50 are proposed in the literature as thresholds to
separate compounds into actives and inactives. The most commonly used thresholds are 1µM
and 10µM. In our model we have used IC50 = 10µM as a threshold. Thai and Ecker utilized
a binary QSAR method to build a classification model with 10µM threshold, achieving a 75%
overall accuracy on a test set of 64 compounds, 86% accuracy in predictive active compounds
and 55% accuracy in predicting inactive compounds.

4 CONCLUSIONS

This study suggests that GP approaches to classification are comparable in accuracy to those
produced by the DT ensemble methods that are widely considered to represent the state of
the art in classification modeling. In common with GP regression techniques, GP classification
methods have a number of advantages; the confidence in prediction is estimated for each in-
dividual compound, as Bayesian methods they are robust to overtraining and they require no
user-determined parameters, meaning that they may be used as part of an automated model
building scheme. One disadvantage of the intrinsic GP classification methods (but not GP-
probit) is the computational complexity of the algorithm, which scales as O(N3(N + K)),
where N is the number of compounds in the training set and K is the number of descriptors.
For comparison, the computational complexity of GP-probit models can range from O(N3) to
O(N4) depending on the chosen hyperparameter optimization technique. This means that the
GP classification method may be impractical for very large data sets including large numbers
of descriptors.

We have also investigated the correspondence of the estimated confidence in prediction with
accuracy. The results have been mixed, showing only a small improvement in accuracy if any.
This suggests that, while the probabilistic methods such as bagging and GPs capture the un-
certainty due to the variation in model fit, they miss a significant source of variability. It is
likely that one missing source of variability is the influence of additional descriptors that is not
captured by the training set, for example functionalities that are not well represented in the
training set molecules. This illustrates a limitation in currently available descriptors, namely
that typically each individual descriptor has a low correlation with the observable being mod-
eled. This means that many descriptors are often required to build a highly predictive model
and the transferability of models to new molecules containing previously unseen structural mo-
tifs can be limited. Advanced ‘machine learning’ techniques such as DT ensembles and GPs
may have now reached the limit of predictive power with the currently available descriptor sets.
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