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Have you heard that Deep Learning
can do everything?




62 startups in Al/Chemistry segment

e Aggregate and Synthesize Information
* Understand Mechanisms of Disease

* Repurpose Existing Drugs

* Generate Novel Drug Candidates

e Validate Drug Candidates

* Design Drugs

e Design Preclinical Experiments

* Run Preclinical Experiments

e Design Clinical Trials

e Recruit for Clinical Trials

e Optimize Clinical Trials

e Publish Data

* One of my students — Sam Cooper has started Phenomics Al (Canada)

https://blog.benchsci.com/startups-using-artificial-intelligence-
in-drug-discovery



https://blog.benchsci.com/startups-using-artificial-intelligence-in-drug-discovery

Deep Learning/Artificial Intelligence — citations (WoS, 1995-2018)
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What’s the difference between , Machine

4

Learning and

* There is significant overlap
in the methodologies.

* Quite often we mix and Machine
match to obtain good ' '
results — there is a place for
each approach

* I'd look at it as a spectrum
of tools that can be
combined to get the best
results for particular
problems

Statistics

Understanding/Prediction



What’s the difference between , Machine

Learning and

¥) ¢

e Statistics has a long history in data analysis —
many methods to analyse, predict and model
data.

* Based mostly on analysis of variance, expected

distributions and mathematical formalism.
Mature.

* Machine Learning grew out of a desire to cope
with larger unstructured, disjointed data.
* More of a black box (or even a complete black

box). Suffers from ‘the curse of dimensionality’
— need to reduce the descriptor space




What’s the difference between , Machine

4

Learning and

* Neural Networks were an initial approach to mimic
brain architecture.

 However, training ‘deeper’ feedforward neural
networks tends to yield worse results (both in
training/test error) than shallow ones (with 1 or 2
hidden layers).

output layer
input layer

, , . . hidden layer
* ‘Deep’ architectures for learning were recently

developed — in 2006 some breakthroughs were made

* Humans organize their ideas and concepts ; . B0 @ :
h|era rCh|Ca y | Genome 2 ; Structures
* Brain architecture is ‘deep’ , we can copy that ' Transcriptome
 Humans first learn simpler concepts and then compose
them to represent more abstract ones. | |
* Pre-training can significantly improve prediction. Drugs
Deep NNs abstract layers of information at
different levels of abstraction

Functions
Proteome
Properties

Input layer Hidden layers Output layer



Alan Turing (1948) — idea of an ‘e-machine’ — first idea of a neural computer

wizanioii: unor-anised jacfdnsay.

Ly wielts wndlged roehives have confiourations saeh that I once that con-
Ciguration is reached, awnd A0 the interfercnce thercafter is apsropriately restricoted,
tlhve sachine behaves as one orpanised for some definite purpose. Hor instaice the
i=8ype camchine shevmn Leloc.was chosen ot random

ouT

If the connections numbered 1, 3, &, &4, are in condition 1i) initielly and connections
£, 5, 7 are in condition i}, then the wachi.e ey be consicered Bo be one far the
surpose of passine on signels with w delay of I wmovents. This iz a particaler cane aof
a very ceneral uroperty of J-type machines (and many other types) wiz that with sult-
able iritisal conditi.ng they will do any required job, given sufficient tiwe and jro-
videc the nu.ber of units is suw'ficient. In jarticular vith = E=type unerganised
cacnine with aufficient units one can find initial comditions which will make 1t into
& urniversal pachine with a given storage capacity. (A formal. proof to this effect
wight be of sose interest, or even a demonstration of it starting with a particuler
unorggnineu B-type machine, but T sun not giving it as it lies rather too fur ocutslde
the main argusent).

with these F-type machines the possibility of interference which could set
in a_q_;:‘?pl‘intu icitial conditions has not been wrvengsed fer. It ia however not .
difficuit to think of sppropriate methods by which this could be done. For inatance

instead of the conneotion cne might use Eere A, B
A .

Written while Turing was working for the National Physical Laboratory in London,
the paper did not meet with his employers' approval. Sir Charles Darwin, the
director of the Laboratory, called it a 'schoolboy essay' and wrote to Turing

first outline of a ‘neural network’, but sadly Turing never published it.

http://www.alanturing.net/turing_archive/pages/Reference%20Articles/connectionism/Turing%27s%20neural%20networks.htm |

complaining about its 'smudgy' appearance. In reality this far-sighted paper was the

In 1943, neurophysiologist Warren
McCulloch and mathematician Walter Pitts
wrote a paper on how neurons might work.
In order to describe how neurons in the
brain might work, they modelled a simple
neural network using electrical circuits.

In 1949, Donald Hebb wrote The
Organization of Behavior, a work which
pointed out the fact that neural pathways
are strengthened each time they are used,
a concept fundamentally essential to the
ways in which humans learn. If two nerves
fire at the same time, he argued, the
connection between them is enhanced.
https://cs.stanford.edu/people/eroberts/co
urses/soco/projects/neural-
networks/History/historyl.html



Example of a Neural Network

Predicting TLC (Thin Layer Chromatography)

*Compounds move up the plate depending
on the solvent, their properties etc.

*We can predict the R(s (retention times)
using details of the molecules and the
solvent.

Separate mixtures, identify compounds
etc.

Solvent front

Compound moved
to here (Ry/x)

Start point

Silica on glass

/
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+ 22 substituted benzoic acids
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* 2 solvent systems

« 6 - mixtures 1 Acetonitrile - Water 30 : 70
2 Acetonitrile - Water 40 - 60
3 Acetonitrile - Water 50 - 50
4 MeOH - Water 40 - 60
5 MeOH - Water 50 - 50
6 MeOH - Water 60 - 40

« 22 compounds x 6 mixtures = 132 experiments



Compound MeOH:H,O:TFA CHyCMN:-H,O:TFA THF:H;O:TFA
Gla0nl ELR 25:75:1
4-F-benzoic acid 34 3.08 13.5
3F bensole acid 30 309 143 Measurements
2-F-benzoic acid 2.0 201 6.9
Z-trifluoromethylbenzaic acid 38 4.83 19.2
J-trifluoromethylbenzaic acid 0.8 7.70 —
d-triflucromethylbenzoic acid 11.3 14.47 -
2-F 4-trifluoromethylbenzoic acid GG BR.24 -
4-F 3-trifluoromethylbenzoic acid 12.8 9.54 -
4-F 2-trifluoromethylbenzoic acid 5.4 5.68 -
2,5-dichlorobenzoic acid 8.7 6.72 -
salicylic acid 4.1 3.50 19.8
benzoic acid 4.0 238 2.4
2-methoxybenzoic acid 1.5 1.64 28
4-methoxybenzoic acid 3.0 2.46 ri
3-methoxybenzoic acid 3.4 2.74 0.4
3-toluic acid 5.5 4.16 14.2
2-toluic acid 5.4 401 13.4
4-toluic acid 4.9 3.92 15.1
L{+)-mandelic acid 0.8 0.72 2.6
d-aminobenzoic acid 0.4 0.42 1.9
2-chlorobenzoic acid 3.1 3.09 11.7
4-chlorobenzoic acid 8.0 5.54 28.0
4-(trifluoreamethylmandelic acid 3.4 291 20.7
phthalic acid 0.7 045 2.6
3-{p-hydroxyphenyl}propionic acid 1.0 .90 5.0
probenicid 14.5 17.58 —
4-{aminomethyl)benzoic acid 1.2 1.17 4.1
3,5-dichlorobenzoic acid - 1320 —
2.4.6-trihvdroxybenzoic acid 0.3 0.35 4.3
2,6-dichlorobenzoic acid 2.9 3.59 16.2
3-hydroxybenzoic acid 1.0 0.71 5.5
3-chlorobenzoic acid 8.0 5.26 25.4
3.4, 5-trimethvlbenzoic acid 2.0 1.80 3B
2 4-dichlorobenzaoic acid 11.4 7.88 -
2.4 6-trihydroxybenzoic acid 0.4 0.36 4.1
4-hydroxybenzoic acid 0.7 0.50 4.5
d-ethylbenzoic acid 10.8 7.27 23.7
2,3, 4-trimethoxybenzoic acid 1.6 1.92 1.7
2.4 6-trimethoxybenzoic acid 9.1 6.91 22.2
3.5-dihydroxybenzoic acid 0.2 0.32 2.9
2,3-dihydroxybenzoic acid 1.3 0.96 7.9
2,6-dihydroxybenzoic acid 0.8 Q.79 3.8
2. 5-dihydroxybenzaic acid 0.8 0.78 7.5
24-dihydroxybenzoic acid 1.1 0.95 10,7
3 4-dihydroxybenzoic acid 0.3 .33 31
2 4-chlorophenoxy-2-methylpropionic acid 15.0 11.66 -
4-acetoamidophenol 0.2 0.32 0.9




* Molecular properties were calculated for each of the molecules and tabulated in a
spreadsheet (tlcdata.xls) e.g.

No. compound number

Cpd name of compound

Solvent water and acetonitrile/methanol

Rf retention time

Rm (log (1-Rf)/Rf))

S_Area surface area of molecule in A2

clogp calculated partition coefficient octanol/water

volume molecular volume in A3

MPolar polarizability of the molecule cm-25

dipole dipole moment of the molecule (Debye)

dipsol dipole moment of the solvent (%solv1+%so0l2)*100 Debye
PolSol polarizability of of the solvent (%pol1+%pol2)/100 Debye

Ovality: how removed from sperical ) 4 3 2/3
Ovality=S/ 3 E[ZVﬂ')

water dipole is also given, 2.75Debye




Neural networ

*Simulates the way that neurons are interconnected

*‘learns’ by adjusting the connection weights between nodes taking an input set of parameters and attempting to fit
the output measurements

*New data can then be entered and using the ‘learned’ model -> predict

Hidden Lavers

GOMNESTIONS —

This network has a
2:4:4:1 topology

Like neurons, the connections
are made when a threshold value

. is attained.

Input Lah Output Layer Use ‘back propagation of errors’ to

adjust the connections

http://en.wikipedia.org/wiki/Backpropagation
http://en.wikipedia.org/wiki/Artificial neural network



http://en.wikipedia.org/wiki/Backpropagation
http://en.wikipedia.org/wiki/Artificial_neural_network

TLC Neural Network and plot of measured vs Predicted results

Table III Neurone-interconnection weights for the 7:3:1 network after 1000 cycles of training.
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Quantitative Structure Chromatography Relationships in predicte

Reversed-phase High Performance Liquid Chromatography:
Prediction of Retention Behaviour using Theoretically Derived
Molecular Properties

. . (24 years ago!)
Cupid et al. Chromatographia, 1993, 37(5), 241-249



What’s changed? — much ‘deeper’ networks

can now be optimised

The renaissance in NN started with “ImageNet Classification with Deep Convolutional Networks”, cited over
6,000 times and is widely regarded as one of the most influential publications in the field.

Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton created a “large, deep convolutional neural network”
that was used to win the 2012 ILSVRC (ImageNet Large-Scale Visual Recognition Challenge).
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Using a Deep NN model to recognhise images

What caught attention — Hintons work on
image recognition

deep convolutional neural network to
classify the 1.2 million high-resolution
images in the ImageNet LSVRC-2010
contest into the 1000 different classes
considerably better than the previous
state-of-the-art.

NN has 60 million parameters and 650,000
neurons, consists of five convolutional
layers, some of which are followed by max-
pooling layers, and three fully-connected
layers with a final 1000-way softmax.

GPU implementation of the convolution
operation. Used “dropout” to avoid
overfitting.
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Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.



What'’s changed?

Hinton’s revolutionary work on Deep Belief Networks (DBNs):
* A fast learning algorithm for deep belief nets Neural Computation 2006, 18:1527-1554

Bengio et al.

* Greedy Layer-Wise Training of Deep Networks. Advances in Neural Information Processing
Systems 2007, 19 (NIPS 2006), pp. 153-160, MIT Press

Marc’Aurelio et al.

 Efficient Learning of Sparse Representations with an Energy-Based Model, in J. Platt et al.
(Eds), Advances in Neural Information Processing Systems (NIPS 2006), 2007, MIT Press

These include the following key principles:
* Unsupervised learning of representations is used to (pre-)train each layer.

* Unsupervised training of one layer at a time, on top of the previously trained
ones. The representation learned at each level is the input for the next layer.

* Use supervised training to fine-tune all the layers (in addition to one or more
additional layers that are dedicated to producing predictions).



The renaissance in Neural Networks

* Deep learning allows computational models that are composed of (many)
multiple processing layers to learn representations of data with multiple levels of
abstraction.

 These methods have dramatically improved the state-of-the-art in speech
recognition, visual object recognition, object detection and many other domains
such as drug discovery and genomics.

* Deep learning discovers intricate structure in large data sets by using the
backpropagation algorithm to indicate how a machine should change its internal
parameters that are used to compute the representation in each layer from the
representation in the previous layer.



The renaissance in Neural Networks

* Deep convolutional nets have brought about breakthroughs in processing images,
video, speech and audio, whereas recurrent nets have shone light on sequential

data such as text and speech.

* Deep-learning methods are representation-learning methods with multiple levels
of abstraction, obtained by composing simple but non-linear modules that each
transform the representation at one level (starting with the raw input) into a
representation at a higher, slightly more abstract level. With the composition of
enough such transformations, very complex functions can be learned.

* LeCuneta NATURE|VOL521|28MAY2015



What is ‘Deep Learning” ?

* It belongs to the class of machine learning methods

* Typically includes multiple layers of non-linear processes for feature
extraction and a connected series of layers for processing, model
building and information extraction.

* As in machine learning — Deep learning can be supervised (models) or
unsupervised (classification).

* Different layers (or components) are essentially different layers of
abstraction (representative, but not typically ‘real’). The layers can be
simple connections, include transformation of the data or even
include embedded generative models.

* The architecture of the system in some way follows that of the brain
and artificial neural networks are the simplest in terms of topology.



What is ‘Deep Learning” ?

* The transition from Neural Networks to Deep Learning probably arose
from the idea of generative models (Learning multiple layers of
representation, Hinton G. E., TRENDS in Cognitive Sciences 2007,
11(10), 428-434).

* | think the ‘Deep’ description is best categorised by the level of
abstraction. This a move towards machine intelligence. Humans
abstract knowledge, now machines do the same.

* A major advance is that feature selection (a major bug-bear in
Machine Learning methods) is often no longer required, or at least
can be handled.



Generative models

To learn multiple layers of feature detectors when labelled data are scarce or
nonexistent, some objective other than classification is required

In a neural network that contains both bottom-up ‘recognition’ connections and
top-down ‘generative’ connections it is possible to recognize data using a
bottom-up pass and to generate data using a top-down pass.

If the neurons are stochastic, repeated top-down passes will generate a whole
distribution of data-vectors (fantasies). This suggests a sensible objective for
learning: adjust the weights on the top-down connections to maximize the
probability that the network would generate the training data.



Generative models

So, the objective is to find a hidden representation that allows generation of the
training data. We’re not fitting a model to an output, we’re fitting an input and
generating the input. The hidden layers tell us what is important to generate the
model. It does feature selection.

The example developed by Hinton, using as the generative layers “Restricted
Boltzmann Machines (RBMs)” — which is based on work by Somlenski (1986) on
“Foundations of Harmony Theory” —a mathematical theory of information
processing. The combination of approximate inference for learning the
generative weights, and “fantasies” (fantasies are generated from the model by
using the generative weights in a topdown pass) for learning the recognition
weights is known as the ‘wake-sleep’ algorithm learn deep directed networks
one layer at a time by stacking RBMs.

http://www.cs.toronto.edu/~hinton/



http://www.cs.toronto.edu/~hinton/

Lots of terminology:

Convolutional Networks
Recursive Nets

Autoencoders

Representational Learning
Structured Probabilistic Models
Deep Generative Models
Bi-Directional Recurrent Neural Networks
Recursive Boltzmann Machine
Deep Belief Networks
Generative Adversarial Networks
Long-Short Memory Units
Multi-Layer Perceptron

Rectified Linear Units

Recurrent Neural Networks
Recursive Neural Networks
Representation Learning

T-SNE

Transfer Learning

An example from our work.
RBM 1

B RBM 2

Y

Y

A

Stacked autoencoder Parametric t-SNE

wi w2 w’

t-SNE

encoder decoder

Supplementary Fig 2 - Example of a 4-layer parametric t-SNE model.
Two RBMs (A-B) are pre-trained through contrastive divergence. The
hidden layer of the first RBM is used as input for the second RBM (B).
A stacked autoencoder is defined combining the RBMs (C). Fine-tuning
of network weights and biases is performed after adding a t-SNE layer
on top (D) of the encoder by backpropagation.

t-distributed stochastic neighbour embedding (t-SNE) is a
machine learning algorithm for dimensionality reduction
developed by Geoffrey Hinton and Laurens van der Maaten.
We used a version called parametric t-SNE.



Several reviews in drug discovery and applications of Deep Learning

LDA

amr o NG &R o= |
: ; Is Multitask Deep Learning Practical for Pharma?
. ke I peeptesrnine Ramsundar et al. Chem. Inf. Model., 2017, 57 (8), pp
2068-2076
Compuistionsponer ariven Pa— ’ Our analysis and open-source implementation in

DeepChem provide an argument that multitask deep
networks are ready for widespread use in
commercial drug discovery.’

From machine learning to deep learning: progress in
machine intelligence for rational drug discovery

Zhang et al. Drug Discovery Today Volume 22, Number 11
November 2017

‘The most commonly used networks are convolutional
neural networks (CNN), stacked autoencoders, deep belief
networks (DBN), and restricted Boltzmann machines’

Hidden

Output
(2 sigmoid) (1 sigmoid)

Deep Learning in Drug Discovery

Gawehn, Hiss and Schneider. Mol. Inf. 2016, 35, 3 — 14

‘With the development of

new deep learning concepts such as RBMs and CNNs, the
molecular modeler’s tool box has been equipped with potentially
game-changing methods.




Several reviews in drug discovery and applications of Deep Learning

5 v-( -]
B iUl Positive Deep-learning ‘ [{
DILI Negative Architecture £ { “
R .
KY . £ ‘{_Score =0.991 |
R T & /
Deep Learning for Drug-Induced Liver Injury Protein-Ligand Scoring with Convolutional Neural Networks.
Xu et al. J. Chem. Inf. Model. 2015, 55, 2085-2093 Ragoza et al. J. Chem. Inf. Model. 2017, 57, 942-957
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@ @ @ //@ Low Data Drug Discovery with One-Shot Learning.
Ve Alte-Tran et al. ACS Cent. Sci., 2017, 3 (4), pp 283—-293

"""" ‘we demonstrate how one-shot learning can be used to significantly
Deep Neural Nets as a Method for Quantitative lower the amounts of data required to make meaningful predictions
Structure-Activity in drug discovery applications. We introduce a new architecture, the
Relationships. iterative refinement long short-term memory, that, when combined

Junshui et al. J. Chem. Inf. Model. 2015, 55, 263-274 with graph convolutional neural networks, significantly improves

learning of meaningful distance metrics’



o0, s =PR[ICESS L
S o O ""ANALYSIS
g3 N2 |
= LARGE B|ﬁlM.f“.qm,,AnmuNaasawcﬂz

Deep Learning and Big Data gt AT

-~ BhSED
”WWSDIENGE .......

A Seaich =

To a large extent, they have gone hand in hand. Along with massive computing power (GPUs) you
typically need:

e Avery large amount of data to refine what is essentially a very large model with huge numbers of

variables.
* Although this is changing see reference ACS Cent. Sci., 2017, 3 (4), pp 283-293 on one-shot

learning.
e Reinforcement learning, resampling, stepwise methods can be more efficient in smaller

datasets.
* The other problem can be that datasets are too big. We recently had a problem of

clinical imaging data that was too big to compute.

e Tests of robustness that are up to finding the ‘ground truth’
* L1 and L2 regularisation, Bayesian regularization with penalties, early termination, dropout,

resampling

* Ways of finding the correct hyperparameters - it’s not just plug and play. Serious work is required
to optimise.



Data Driven analysis of tumours using DESI-MS

Paolo Inglese, Robert Glen, Zoltan Takats, Jeremy Nicholson




Data Driven Identification and analysis of tumour sub-types

capillary

MS inlet
Electrospray
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52,000
tumour spectra
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(52 slices)
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Molecular picture
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analysis and
clustering

Chemical
components and
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pathways

The tumour microenvironment
is 3-dimensional.

More opportunity to capture the
biological interactions.
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Inglese, Paolo, et al. "Deep learning and 3D-DESI imaging reveal the hidden metabolic heterogeneity of

cancer." Chemical Science (2017), 5, 3500-3511



The spectra classified as belonging to the tumour class can be analysed through

unsupervised techniques.

Tumour spectra

Unsupervised dimensionality reduction
(parametric t-SNE)*

|

100 300 700 1000

u

RBM 1
RBM 2

v W1 h h wz h’

OPTICS: density-based clustering**

14+

Stacked autoencoder Parametric t-SNE

w1 w2 w
> 8

t-SNE

Cluster 3

enceder  decoder

0 2 4 6 8 10 12 14
X

*Maaten, L. (2009). Learning a parametric embedding by preserving local structure. International Conference on Atrtificial
Intelligence and Statistics.

*Ankerst, Mihael, et al. "OPTICS: ordering points to identify the clustering structure." ACM Sigmod record. Vol. 28. No. 2. ACM,
1999.




Using autoencoders to learn the ‘shape’ of the data — compress it into a lower

dimensionality

% —>

LayerL, Layer L,

Layer L,

Manifold learning determines the global
low-dimensional embedding of the data
space by looking at the local
characteristics of the high-dimensional
space.

Autoencoders can be seen as simple
parametric manifold learning models.

Autoencoders are simple feed-forward
ANN (Artificial Neural Network) trained
to reconstruct the input.

The hidden layer can be used to
"compress” the data into a lower-
dimensional space (latent).

They are deterministic (input X
always returns the same output f(X)).

Bengio, Yoshua. "Learning deep architectures for Al." Foundations and trends® in Machine Learning 2.1 (2009): 1-127.

*http://ufldl.stanford.edu/wiki/index.php/Autoencoders_and_Sparsity



A comparison with PCA shows the limits of linear methods. Parametric t-SNE
Is capable of finding a more complex mapping of the similarities between
spectra.

parametric t-SNE (391-250-250-1000-2)
Perplexity = 30 PCA
Train: non-lin. GD (Polak-Ribiere) 500 epochs (tested: autoscaling, pareto, vast, range, level scaling)

ooooo

EEENS
. HEEN;

| |
PCA #2 (13.78%)

uuuuuu

1
PCA #1 (22.56%)

Simple linear techniques (widely used) are not capable of capturing the complexity of the data
structure.
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The low-dimensional data (from parametric t-SNE) can be clustered using a
density-based clustering algorithm: OPTICS (similar to DBSCAN). The optimal
number of clusters can be identified through the reachability plot.

Some high dense regions were not separated enough to
be considered individual clusters.

oo

Clustering results are compatible with a sequence of
contiguous tissue sections.

Projection of the cluster labels on the tissue
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Comparing the results of OPTICS with those of a co-expression network: from
spectra clustering to ion clustering. Identifies the key differentiating ions in the

clusters.

Co-expression network:
adjacency matrix = pairwise ion correlations
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Look for concordance between the sub-networks and
the OPTICS clusters.

Sum of ion intensities in the 3 largest sub-networks
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Matching between the 3 largest sub-networks and the 3 OPTICS clusters can be used to identify the
characteristic ions of the 3 tissue sub-types. Here the intensities of the 3 ions most connected in each sub-
networks are compared in the 3 clusters (c1, c2, ¢3), the healthy (h) and the background (b) classes.

Pl — phosphoinositols, PE — phosphotidylethanolamines, PG — phosphtidylglycerols, Ceramides
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We have now a deeper insight of the molecular distributions inside the tumour.
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Matching between the 3 largest sub-networks and the 3 OPTICS clusters can be used to identify the
characteristic ions of the 3 tissue sub-types. Here the intensities of the 3 ions most connected in each sub-
networks are compared in the 3 clusters (c1, c2, ¢3), the healthy (h) and the background (b) classes.
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Matching between the 3 largest sub-networks and the 3 OPTICS clusters can be used to identify the
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Clusters and Chemistry

* Cluster 1. Was associated with ions expressed more extensively in the entire tumour, was
characterised by an abundance of phophatidylethanolamines (PE), and these high levels
have been associated with rapidly proliferating human colorectal cancer in previous
work. Additionally, the abundance of phospatidylinositols (Pl) was found only in cluster
one, which are also hallmarks of viable cancer tissue.

* Cluster 2. Phosphatidylglgcerols (PG) were found in cluster two, indicating the presence
of mucus in mucinous subtype colorectal malignant tissue as PGs generally serve as
surfactants in the human body. The presence of very long acyl chains (n>18) excludes a
bacterial origin and indicates peroxisomal dysfunction in this segment. An abundance of
phosphatidylserine (PS) was found only in cluster two, which has previously been
associated with apoptosis of colon cancer cells.

* Cluster 3. Characterised by an abundance of ceramides, which indicates the presence of
a process of necrosis/apoptosis, in agreement with the gross histological appearance in
this sub-region. The increased concentration of ceramides is clearly associated with the
degradation of sphingolipids in the necrotic cell debris.



Reconstruction of the 3D volume of the tumour

Rendering of the smoothed tumour
clusters and identify cancer subtypes
based on metabolism.

Example of comparison between clusters and
histological characteristics of the tissue. Micro-
environments are identifiable from the analysis
and aid the histologist




Where to find out about Deep Learning

THEANO — python library and tutorials (from MILA lab at University of Montreal) http://deeplearning.net/tutorial/

List of Deep Learning software tools
http://deeplearning.net/software links/

Some of the more popular packages

Theano — CPU/GPU symbolic expression compiler in python (from MILA lab at University of Montreal)

Torch — provides a Matlab-like environment for machine learning algorithms in lua

Pylearn2 — Pylearn2 is a library designed to make machine learning research easy.

Blocks — A Theano framework for training neural networks

Tensorflow — TensorFlow is an open source software library for numerical computation using data flow graphs.
MXNet — MXNet is a deep learning framework designed for both efficiency and flexibility.

Caffe -Caffe is a deep learning framework made with expression, speed, and modularity in

Lasagne — Lasagne is a lightweight library to build and train neural networks in Theano.

Keras— A theano based deep learning library.

.......... Lots more



http://deeplearning.net/tutorial/
http://deeplearning.net/software_links/
http://deeplearning.net/software/theano
http://deeplearning.net/software/theano
http://www.torch.ch/
https://github.com/lisa-lab/pylearn2
https://github.com/mila-udem/blocks
http://www.tensorflow.org/get_started/index.html
https://github.com/dmlc/mxnet
http://caffe.berkeleyvision.org/
https://github.com/Lasagne/Lasagne
http://keras.io/

