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The Negative Logarithmic Acid Dissociation Constant:
pPK,

e Quantitative measure of the strength of an acid in solution

e K,is the equilibrium constant for an acid dissociation

reaction
HA e HYT 4+ A
HY|[A™
g, = AT
|HA]

e pK,is the negative logarithmic constant for the acid
dissociation reaction —the smaller the pK,, the stronger the
acid

pK, = _logKa



The Value of a Good pK, Prediction

e Improved in silico tools are useful to medicinal chemists
in the research stage

— Manage time, cost, resources

— Ensure that good quality compounds make it to clinical trial

e Knowledge of pK, is valuable to chemists’ decision
making
- Influence on physicochemical and ADME properties

o Absorption, Distribution, Metabolism, Excretion
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The Value of a Good pK, Prediction

Ketoconazole — pK, 6.43, 3.64
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pH LogD [1] Aqueous solubility (mg/mL) % lonised
[2]
3 0.35 0.43 Highest
5 2.37 0.1 l
7.4 3.46 0.006 Lowest

[1] Mackenzie, H. (2013). The Central Role of pKa in Drug Discovery.
[2] Ghazal, H., Dyas, A., Ford, J. and Hutcheon, G. (2014). The impact of food components on the intrinsic dissolution rate of ketoconazole. Drug

Development and Industrial Pharmacy, 41(10), pp.1647-1654.

© 2017 Optibrium Ltd.



Project Context
Current and past research

* Direct pK, calculation

- Ab initio and DFT studies with implicit solvation model [1]

e QSAR: Correlating pK, with ab initio and DFT calculated descriptors

— Partial atomic charges [2]
- Bond lengths [3]

e Correlation with semi-empirical FMO descriptors calculated with
computed eigenvectors and eigenvalues [4]

[1] da Silva, G., Kennedy, E. and Dlugogorski, B. (2006). Ab Initio Procedure for Aqueous-Phase pKa Calculation: The Acidity of Nitrous
Acid. The Journal of Physical Chemistry A, 110(39), pp.11371-11376.

[2] Svobodova Varekova et al. (2011). Predicting pKa Values of Substituted Phenols from Atomic Charges: Comparison of Different Quantum
Mechanical Methods and Charge Distribution Schemes. Journal of Chemical Information and Modeling, 51(8), pp.1795-1806.

[3] Harding, A. and Popelier, P. (2011). pKa Prediction from an ab initio bond length. Physical Chemistry Chemical Physics, 13(23), p.11264.

[4] Tehan et al. (2002). Estimation of pKa Using Semiempirical Molecular Orbital Methods. Part 1: Application to Phenols and Carboxylic
Acids. Quantitative Structure-Activity Relationships, 21(5), pp.457-472.



Drawbacks

e DFT and ab initio are computationally expensive

e FMO descriptors alone were not enough to produce a good
correlation

e Separate models for separate compound classes — not
universal across any ionisable centre.




Goals for Improvements to Current Methods

e Multi-faceted QSAR model combining partial atomic charge
and bond length descriptors with FMO and energy
descriptors

— All calculated with AM1 level of theory

— Much faster than calculating descriptors using ab initio and DFT
methods

e Unified model: One model accurately predicting pK, for
multiple compound classes

— Previous research involved one model for each compound class
resulting in the production of a number of different models

© 2017 Optibrium Ltd.



DFT Approach
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DFT Approach

Computational details

e First looked at accurate DFT direct calculation method

— Using a thermodynamic cycle and Gibbs energies

e B3LYP/6-31++G** |evel of theory and COSMO solvent model

— Continuum solvation model

e Calculated using NWCHEM software

AH!, —==> AT + H

+
(gas) (gas) (gas)

T —4 Gmfv(AH) ‘I’ 4 Gmfv(Aj ‘l’ AGm:’v(H)

q AG g-1 +
AH(aq) E Ar’aq) + H(aq)

pK, = AG(aq)/2.303 RT

Image credit: Casasnovas, R., Ortega-Castro, J., Frau, J., Donoso, J. and Mufioz, F. (2014). Theoretical pK, calculations with continuum

model solvents, alternative protocols to thermodynamic cycles. Int. J. Quantum Chem., 114(20), pp.1350-1363.



DFT Results

140 compounds

pKa vs experimental
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DFT Results

Thiols

14

R? =0.791842

pKa vs experimental

Best fit line
r2_ =0.96
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DFT Corrected Results
Thiols

Corrected pKa vs experimental
12

R? = 0.960878

Corrected pKa




DFT Corrected Results

Corrections to all compound classes

Corrected pKa vs experimental
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DFT Drawbacks

e Although an accurate method, computational time is slow

— Calculations took days, or weeks for large drug-like compounds

e End-user will want accurate and fast results

— Smaller basis sets still computationally expensive

e Ultimately, a compromise is needed between accuracy and
speed

- Can semi-empirical methods produce the same results?




Semi-empirical Approach
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Direct Calculation of pK_ with AMI

e MOPAC calculations of energy terms

- AM1 semi-empirical method with COSMO solvation model
- Method based on the Neglect of Differential Diatomic
Overlap (NDDO) integral approximation

e Direct calculation of pK, failed

* No correlation between AM1 and DFT energies

e How to use AM1 to get a meaningful prediction?




QSAR

An effective way to use AM1I

e pK, of a compound depends on its structure

Thus, it may be possible to find a Quantitative Structure Activity
Relationship (QSAR)

Is AM1 able to calculate descriptors to build a QSAR model?

Including the ab initio and DFT calculated descriptors which showed
a correlation in previous research

Calculation of various descriptors for ~¥600 compounds
shows positive results




Computational Detalls

e AM1in MOPAC
e All calculations carried out in gas phase

e Descriptors calculated:
- Bond lengths

— Partial charges
- HOMO/LUMO energies
- Heats of formation

— FMO descriptors: electrophilic superdelocalisability (SE) and
nucleophilic frontier electron density (FN) [1]

SE(P) =2+ 3 3 (4/h)  FNP) =
=l.ma=lgq a=l.q

[1] Fukui, K., Yonezawa, T. and Nagata, C. (1954). Theory of Substitution in Conjugated Molecules. Bulletin of the Chemical Society of Japan,
27(7), pp.423-427.



Results
One model per compound class

e Auto-Modeller in StarDrop™ was used to build QSARs for individual compound
classes

e Tested various modelling methods such as Random Forests, PLS and Gaussian
Processes

e The most successful, Radial Basis Function (RBF), modelling method used for all

201

compound classes R? = 0.959028
Compound class | R? (test set) RMSE 15
Carboxylic acids 0.89 0.37 .
Heterocycles 0.89 0.64 ; o ..
Amines 0.96 0.77 g . . .
Phenols 0.96 0.47 )
Thiols 0.72 0.97 g
Oxygen acids 0.88 0.84 Phenols




Unifying the Model

e Attempted to build a unified model

— One model which will be used for all compound classes as opposed
to separate models for each compound class

e Encompasses all descriptors used in each model and,
additionally, a binary indicator variable to classify the site of

deprotonation

e RBF model produced in Auto-Modeller

- Keeping consistency in the modelling method from the individual
models to the unified model



Results
External test set

Predicted vs pKa
207 R? = 0.960499
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Performance of Model on Different Classes

e Tested unified model on separated compound classes

— To evaluate if different classes are predicted better than others

127

Compound class R2 RMSE .-
Carboxylic acids 0.82 0.47
Heterocycles 0.92 0.58
Amines 0.94 0.99 é
Phenols 0.92 0.66 ;
Thiols 0.70 0.74
Oxygen acids 0.94 0.57

R? =0.921958

Phenols
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Applying the Model to a Larger Dataset

e Data provided by Lhasa Limited, https://www.lhasalimited.org/

e New data outside of domain of applicability

Old or new data Size of error




Retraining the Model on a Larger Dataset
Independent test set results

RBF Model vs pKa

207
R? = 0.888477

159

10

RBF Model

R? (test set n=1534) RMSE

0.89 ‘ 1.16



Summary and Further Steps
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Summary and Further Steps

e Semi-empirical quantum calculations used in QSAR

produced an accurate, computationally inexpensive pK,
model

e Attempts to create a unified model proved successful with
the ability to make excellent predictions

e Future considerations:

— Inclusion of consecutive deprotonation of multiple ionisation states
- More accurate semi-empirical method (e.g. PM6)

— Solvation effects taken into account
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