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Overview

• Gaussian Processes

 A powerful computational modelling technique

• Application - predictive ADME and QSAR modelling       
(ADME – absorption, distribution, metabolism and excretion)

 New techniques for finding method parameters

 Examples and comparison with other methods

• Automatic modelling process
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Background

• Machine learning method based on Bayesian approach. 
Not widely used in QSAR and ADME field yet. 

• Advantages:

 Does not require a priori determination of model parameters. 

 Nonlinear relationship modelling.  

 Built-in tool to prevent overtraining, no need for cross-validation.

 Inherent ability to select important descriptors. 

 Provides uncertainty estimate for each prediction.

• Sufficiently robust to enable automatic model generation
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Gaussian Processes: Key idea

• D={Y, X } – given data.                    
We want to find function f:  

Y=f(X)+noise. 

• Bayesian rule

• Prediction is a mean of posterior 
distribution.

• Gaussian Process defines a distribution 
over functions.
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Gaussian Processes: Practical steps

• Structure of functions determined by covariance (kernel) 
function:

• Distribution of functions (property values) is multivariate 
Gaussian with zero mean and covariance matrix 

 Hyperparameter is a variance of noise present in the observed 
values.
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Gaussian Processes: Hyperparameters
• ARD covariance function

• Control fit and smoothness via hyperparameters

 is a variance of noise in the observed values. Too small value 
leads to overfitting.

 are length scale parameters.
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Gaussian Processes: 
How to find hyperparameters?

• Use Bayesian inference in hyperparameters space.

 Posterior for hyperparameters

 Full integration over all hyperparameters

 Or choose most probable value  θ that optimizes the marginal log-
likelihood

• No need for cross-validation or validation set! Also prevents 
overtraining. 
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Gaussian Processes: Make predictions

• Want to make prediction y* at unseen (test) point x*.

• Predictive distribution is Gaussian with mean and variance:

 k describes covariance of training and new points,                          .

• For test set points need to add noise variance to GP 
variance.   
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ADME and QSAR modelling:

Techniques for determining hyperparameters
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Finding hyperparameters

• Optimize the marginal log-likelihood

• Conjugate gradient methods 

 Computationally demanding. Inversion of matrix NxN at each step,  
N is a number of compounds in the training set.  Comp. cost  O(N³).

 The function has multiple maxima. Search can get trapped in a local 
maximum. 

• Need to find simplified approaches.
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Techniques for finding hyperparameters

• “Fixed” values.



M is a number of descriptors.  Search for θ1, θ3 .

• Forward variable selection provides feature selection. 

• Optimization by conjugate gradient methods                
(only length scales).

 Length scales show which descriptors are most relevant. 

• Nested sampling. 

 Search in the full hyperparameter space.  

 Search does not get trapped in local maxima.   
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Nested sampling

• Method by John Skilling to estimate evidence and generate 
posterior samples. 
(http://www.inference.phy.cam.ac.uk/bayesys/Valencia.pdf)

• We want to find most probable hyperparameter values, i.e 
that give the maximum of the likelihood.

• Key idea: 

 Sample uniformly from wide prior space of all hyperparameters.   

 Iteratively replace samples with low likelihood by new samples with 
high likelihood.    

 At the end of the process we have points corresponding to high 
likelihood values.  
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Nested sampling: Example 

• 2 variables. 

• Find maximum of likelihood:

variable 1
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ADME and QSAR modelling: 

Examples and comparison
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Benzodiazepine set

• F. Burden, JCICS 2001, 41, 830-835.

• 245 ligands for the benzodiazepine receptor (in vitro 
binding affinities as pIC50).

• 59 descriptors: 

 Randic and Kier-Hall indices (E-Dragon: www.vcclab.org),

 counts of atoms, rings and functional groups.

• Test set - 15%. 

 Burden’s set split is not known to us. 

 Used set split based on uniform sample of Y values.    
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Benzodiazepine set: Results

Method Desc r²corr(trn) r²corr(test)

PLS 38(3) 0.32 0.53

GP-Basic 38 0.52 0.53

GP-FVS 15 0.52 0.54

GP-Opt 9 0.62 0.51

GP-Nest 38 0.68 0.65

ASNN+kNN 36 0.73 0.64

BRANN 39 0.75 0.71

GPmodel 39 0.76 0.66

GPlinear 39 0.78 0.71

Burden 
results

VCCLAB (www.vcclab.org)

GP-Nest  
on test set: 
RMSE=0.46 
R²=0.63
r²corr=0.65

Training set - 208 compounds, test set - 37 compounds.
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hERG inhibition set

• Inhibition of human ether-a-go-go related gene by 
medication.

• 137 compounds with patch-clamp pIC50 values.

• 166 descriptors: 

 2D SMARTS based + logP, PSA, charge, etc.

• Test set - 20%. 

 Set split based on clustering analysis (Tanimoto level = 0.7).     
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hERG inhibition: Results

Method Desc R² (trn) R² (test)

PLS 166(2) 0.63 0.74

GP-Basic 166 0.79 0.76

GP-FVS 17 0.76 0.80

GP-Opt 26 0.82 0.81

GP-Nest 166 0.81 0.77

ASNN+kNN 166 0.94 0.77 VCCLAB (www.vcclab.org)

GP-Opt  
on test set: 
RMSE=0.6 
R²=0.81
r²corr=0.81

Training set - 110 compounds, 
test set - 27 compounds.
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hERG inhibition model
Predicted pIC50 values versus observed with error bars.

Training set in black. Test set in red.
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• Error bars include noise variance

• Confidence in prediction

• Original GP error bars, do not include 

experimental noise variance

• Applicability of the model
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hERG inhibition model: Descriptors

• Important features:  

 Lipophilicity

 Negative charge 

 Positively charged 
nitrogen at pH 7.4

 Aromaticity index

 HB donor – acceptor 
pairs separated by 6 bonds

 Ketone 

 Amide

hERG pIC50 obs. = 8

predicted= 7.88 ±0.8

hERG pIC50 obs. = 4.3

predicted= 3.99 ±0.84
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Automatic modelling process
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Automatic Model Generation Process

• User provides structures and property values.

• 2D SMARTS based descriptors and logP, 
flexibility, charge, PSA, etc.  A user can import 
own descriptors.

• Split into 3 sets:

 training (building a model),

 validation (model selection),  

 test (independent). 

• Clustering by structural similarity or Y –
based. Or user’s own split.

Input data

Descriptors

Set Split

Modelling

Prediction 
Confidence

Model selection
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Automatic Model Generation Process

• Modelling continuous data: 

 PLS  

 Gaussian Processes (5 techniques)

 Radial Basis Functions + GA 

categorical data:

Decision trees (C4.5) 

• Best model selection is based on performance 
of validation set. 

• Estimation of uncertainty for each prediction.   

Input data

Descriptors

Set Split

Modelling

Prediction 
Confidence

Model selection
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ADMEnsa Interactive. Auto-Modeler.

admensa-support@glpg.com
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Conclusions

• Gaussian Processes is a powerful nonlinear modelling 
technique:

 No a priori determination of model parameters. 

 Built-in tool to prevent overtraining, no need for cross-validation.

 Works well for a big pool of descriptors.

 Identifies relevant descriptors.

 Uncertainty with each prediction. 

• Application to building QSAR and ADME models. New 
techniques for determining model parameters. 

• Automatic model generation process accessible through an 
intuitive desktop environment. 
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Spare slides
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Comparison: hERG inhibition set

Method Desc R² (trn) R² (test) Time 
(min)

PLS 166(2) 0.63 0.74 0.2

RBF-GA 21 1 0.77

GP-Basic 166 0.79 0.76 2.3

GP-FVS 17 0.76 0.80 19

GP-Opt 26 0.82 0.81 13

GP-Nest 166 0.81 0.77 170

ASNN 166 0.94 0.69
188

ASNN+kNN 166 0.94 0.77
VCCLAB

GP-Opt  
on test set: 
RMSE=0.6 
R²=0.81
R²corr=0.8
1

Training set - 110 compounds, 
test set - 27 compounds.
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hERG inhibition model

Predicted pIC50 values versus observed with errorbars.

Training set in blue.  Test set in red.
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• Error bars include noise variance

• Confidence in prediction

• Original GP error bars, do not include 

experimental noise variance

• Applicability of the model
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Admensa Interactive. Auto-Modeller.

admensa-support@glpg.com
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Gaussian Processes: Practical steps
• Structure of functions determined by covariance (kernel) 

function:

• Distribution of functions is multivariate Gaussian with zero 
mean and covariance matrix 

• ARD covariance function (automatic relevance determination)

• Control fit and smoothness via hyperparameters.  

 is a variance of noise present in the observed values.

 are length scale parameters.
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Gaussian Processes: Hyperparameters

• Noise variance     : too small value leads to overtraining.

• Length scale parameters     : large values mean that 
corresponding descriptor does not influence the property 
values very much. Automatic relevance determination.

r =0.6 r =0.9 r =1.2
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