Publications and Presentations

N- and S-Oxidation Model of the Flavin-containing Monooxygenases

N- and S-Oxidation Model of the Flavin-containing Monooxygenases

Jul 3, 2019

This poster was presented at the Eighth Joint Sheffield Conference on Chemoinformatics; 17-19 June 2019

Peter Walton, Mario Öeren, Peter Hunt, Matthew Segall

Abstract

Existing computational models of drug metabolism are heavily focused on predicting oxidation by cytochrome P450 (CYP) enzymes. This is because of their importance in phase I drug metabolism, reactive metabolite formation, and drug-drug interactions. Due, in part, to the success of these models, new drug candidates are typically well-optimised with respect to CYP metabolism. However, novel metabolites are observed due to other, less-studied, enzyme families. For example, the flavin containing monooxygenases (FMOs) are found in multiple tissues, including the liver, and have five active isoforms (FMO 1-5). In common with CYPs, FMOs are responsible for phase I, oxidative metabolism and catalyse a variety of reaction types, including N- and S-oxidation, demethylation, desulphuration and Bayer-Villiger oxidation.

The objective of this study was to elucidate the reaction mechanism of FMO-mediated oxidation to inform the development of models to predict the metabolism of novel substrates.

N- and S-Oxidation Model of the Flavin-containing Monooxygenases: reaction mechanism

You can download the poster on N- and S-Oxidation Models of the Flavin-containing Monooxygenases as a PDF.

INTERESTED IN METABOLISM?

Discover StarDrop™

With its comprehensive suite of integrated software, StarDrop™ delivers best-in-class in silico technologies within a highly visual and user-friendly interface. StarDrop™ enables a seamless flow from the latest data through predictive modelling to decision-making regarding the next round of synthesis and research. This improves the speed, efficiency, and productivity of the drug optimisation and discovery process.